Федеральное Государственное Бюджетное Учреждение "Государственный Научный Центр Российской Федерации Институт Теоретической и Экспериментальной Физики" НИЦ "Курчатовский Институт"

На правах рукописи

Мизюк Роман Владимирович

Кварконий и кваркониеподобные состояния

Специальность 01.04.23 — физика высоких энергий

А В Т О Р Е Ф Е Р А Т диссертации на соискание ученой степени доктора физико-математических наук

Москва 2014 г.

Работа выполнена в ФГБУ "ГНЦ РФ ИТЭФ" НИЦ "КИ", г. Москва

Официальные оппоненты:

доктор физ.-мат. наук, член-корр. РАН Владимир Федорович Образцов (зав. лаб. электрослабых процессов ГНЦ РФ ИФВЭ, г. Протвино),

доктор физ.-мат. наук, профессор **Лидия Николаевна Смирнова** (профессор физического факультета МГУ, г. Москва),

доктор физ.-мат. наук, профессор **Рудольф Николаевич Фаустов** (главный научный сотрудник ВЦ РАН, г. Москва).

Ведущая организация:

Институт ядерной физики им. Будкера СО РАН (г. Новосибирск).

Защита диссертации состоится 23 декабря 2014 г. в 11 часов на заседании диссертационного совета Д.201.002.01 в конференц-зале ИТЭФ по адресу: г. Москва, ул. Б. Черемушкинская, д. 25.

С диссертацией можно ознакомиться в библиотеке ИТЭФ и на сайте www.itep.ru.

Автореферат разослан 21 ноября 2014 г.

Ученый секретарь диссертационного совета кандидат физ.-мат. наук

В.В. Васильев

Общая характеристика работы

Диссертация посвящена изучению кваркония и кваркониеподобных состояний. В представленной работе обнаружены спин-синглетные состояния боттомония $\eta_b(2S)$, $h_b(1P)$ и $h_b(2P)$, а также заметно улучшена точность в массе и впервые измерена ширина состояния $\eta_b(1S)$. Обнаружены заряженные боттомониеподобные состояния $Z_b(10610)$ и $Z_b(10650)$, расположенные вблизи порогов рождение $B\bar{B}^*$ и $B^*\bar{B}^*$ соответственно. Показано, что свойства этих состояний согласуются с гипотезой об их молекулярной структуре. Обнаружены заряженные чармониеподобные состояния $Z(4050)^+$ и $Z(4250)^+$ с использованием Далиц-анализа распада $\bar{B}^0 \to \chi_{c1}\pi^+K^-$, и подтверждено состояние $Z(4430)^+$ с использованием Далиц-анализа распада $B \to \psi(2S)\pi^+K$. Отметим, что все заряженные кваркониеподобные состояния.

Представленные в диссертации исследования основаны на данных эксперимента Belle, набранных в период с 1999 по 2010 год на асимметричном e^+e^- -коллайдере КЕКВ (г. Цукуба, Япония) в области $\Upsilon(nS)$ резонансов.

Актуальность темы

Адронная спектроскопия является уникальной лабораторией для изучения сильного взаимодействия в непертурбативном режиме. Ожидается, что в конечном итоге моделирование на решетках позволит дать описание адронов из первых принципов. В решеточных вычислениях наблюдается быстрый прогресс, однако для многих практических вопросов, особенно связанных с возбужденными состояниями, точность остается недостаточной. Поэтому в настоящее время активно используются эффективные теории и феноменологические модели.

В кварковой модели многочастичная динамика релятивистской системы не учитывается, и адроны рассматриваются как связанные состояния конституэнтных кварков. Мезоны состоят из $q\bar{q}$ пар, барионы – из qqq. Поиск других эффективных степеней свободы, таких как дикварк qq или валентный глюон g, продолжается в области легких адронов в течение десятилетий, однако надежно установленных экзотических состояний – тетракварков $(qq\bar{q}\bar{q})$, гибридных мезонов $(q\bar{q}g)$ или глюболов (gg) – пока нет.

Применение кварковой модели к тяжелому кварконию с момента обнаружения J/ψ в 1974 году было особенно успешным, поскольку эта система является приближенно нерелятивистской. Довольно неожиданно оказалось, что сильно возбужденные состояния чармония и боттомония проявляют многочисленные отклонения от предсказаний кварковой модели. Начиная с 2003 года, экспериментально было обнаружено более десятка состояний, не вписывающихся в схему $q\bar{q}$ уровней. Кризис теории вызывает высокий интерес, однако общего теоретического понимания новых результатов пока нет.

Цель диссертации

Целью диссертации является изучение кваркония и кваркониеподобных состояний. Представленные результаты охватывают изучение области низких возбуждений, области вблизи порогов рождения открытого аромата и области сильно возбужденных состояний выше порогов.

Научная новизна

Впервые обнаружены состояния $\eta_b(2S)$, $h_b(1P)$ и $h_b(2P)$, впервые измерена ширина состояния $\eta_b(1S)$. Впервые обнаружены состояния $Z_b(10610)$, $Z_b(10650)$, и дано объяснение их свойств в предположении о молекулярной структуре их волновых функций. Впервые обнаружены состояния $Z(4050)^+$, $Z(4250)^+$, и подтверждено состояние $Z(4430)^+$ с использованием амплитудного анализа.

Основные положения, выносимые на защиту

- 1. Обнаружение *P*-волновых спин-синглетных состояний боттомония $h_b(1P)$ и $h_b(2P)$.
- 2. Обнаружение S-волнового спин-синглетного состояния боттомония $\eta_b(2S)$, самое точное на момент публикации измерение массы и первое измерение ширины состояния $\eta_b(1S)$.

- 3. Обнаружение заряженных боттомониеподобных состояний $Z_b(10610)$ и $Z_b(10650)$, расположенных вблизи порогов рождения $B\bar{B}^*$ и $B^*\bar{B}^*$ соответственно.
- 4. Обнаружение заряженных чармониеподобных состояний $Z(4050)^+$ и $Z(4250)^+$, распадающихся на $\chi_{c1}\pi^+$, с использованием Далиц-анализа распада $\bar{B}^0 \to \chi_{c1}\pi^+ K^-$.
- 5. Подтверждение заряженного чармониеподобного состояния $Z(4430)^+$, распадающегося на $\psi(2S)\pi^+$, с использованием Далиц-анализа распада $B \to \psi(2S)\pi^+ K$.

Апробация работы и публикации

Основные материалы диссертации опубликованы в работах [1–19]. Материалы, представленные в диссертации, докладывались на совещаниях сотрудничества Belle, теоретических и общеинститутских семинарах ИТЭФ, сессиях-конференциях секции отделения ядерной физики РАН, многочисленных международных конференциях, в частности: International Conference on High Energy Physics (ICHEP) 2008, 2012; Europhysics Conference on High Energy Physics (EPS-HEP) 2009, 2011; Les Rencontres de Physique de la Vellee d'Aoste (La Thuile) 2009, 2011, 2012; Flavor Physics and CP Violation (FPCP) 2011, 2012; Deep-Inelastic Scattering Workshop (DIS) 2010, 2011, 2012, 2013; Internat. Workshop on e^+e^- collisions from Φ to Ψ (PHIPSI) 2009, 2011, 2013; Quark Confinement and the Hadron Spectrum (QCHS) 2008, 2012; International Workshop on Charm Physics (CHARM) 2009, 2010, 2012; International Workshop on Heavy Quarkonia (QWG) 2008, 2011, 2013.

Результаты измерения параметров $h_b(1P)$ и $\eta_b(1S)$ подтверждены в эксперименте Belle в другом процессе: $\Upsilon(4S) \to \eta h_b(1P) \to \eta \gamma \eta_b(1S)$ [20]. Результат Далиц-анализа распада $B \to \psi(2S)\pi^+K$ подтвержден в эксперименте Belle в полном четырехмерном амплитудном анализе [21] и на большей статистике в эксперименте LHCb [22].

Структура и объем диссертации

Диссертация состоит из введения, девяти глав и заключения. Ее объем 199 страниц, включая 60 рисунков и 31 таблицу. Список цитируемой литературы содержит 260 наименований.

Краткое содержание диссертации

Введение посвящено обсуждению актуальности изучения кваркония и кваркониеподобных состояний. В нем формулируется тема исследования и приводится план расположения материала.

Глава 1 посвящена обсуждению низких возбуждений кваркония. После классификации уровней представлен обзор их экспериментального обнаружения и теоретических подходов к их описанию. Мы сравниваем предсказания пертурбативных вычислений для расщеплений и ширин с экспериментальными данными. Обсуждаются также спектральные методы.

В Главе 2 представлены новые результаты по сильно возбужденным состояниям вблизи и выше порогов открытого аромата. Эти результаты получены за последнее десятилетие, и мы начинаем с обзора современных экспериментов. Затем последовательно обсуждаются обнаруженные состояния, внимание уделено открытым вопросам и перспективам получения ответов на них.

В Главе 3 представлена экспериментальная установка Belle, являющаяся универсальным 4π магнитным спектрометром, набиравшим данные на асимметричном e^+e^- коллайдере КЕКВ в области $\Upsilon(nS)$ резонансов. Установка состояла из кремниевого микрострипового детектора, дрейфовой камеры с пятьюдесятью слоями проволочек, матрицы из пороговых черенковских счетчиков, времяпролетной системы на основании сцинтилляционных счетчиков, электромагнитного калориметра, состоящего из кристаллов CsI(Tl), расположенных внутри сверхпроводящей обмотки, создающей магнитное поле с напряженностью 1.5 Т. В щелях ярма магнита были размещены RPCкамеры для регистрации K_L^0 мезонов и идентификации мюонов. Установка была оснащена триггером. В главе описаны также процедуры идентификации частиц и моделирования событий методом Монте-Карло.

В Главе 4 начинается изложение результатов, вошедших в диссертацию. Мы начинаем с работы по обнаружению $h_b(1P)$ и $h_b(2P)$ в адронных переходах $\Upsilon(5S) \to h_b(nP)\pi^+\pi^-$ [1]. Здесь и далее для краткости $\Upsilon(5S)$ обозначает резонанс $\Upsilon(10860)$, который, наряду с $5S_1$ состоянием $b\bar{b}$ кварков, может содержать другие примеси, например $B\bar{B}$ адроны. Мотивацией для поиска этих переходов послужило обнаружение в эксперименте CLEOc процесса $e^+e^- \to h_c \pi^+\pi^-$ в области пика $\psi(4160)$ резонанса [23]. Схожесть процессов в области чармония и боттомония наблюдалась ранее для реакций

 $e^+e^- \to J/\psi \pi^+\pi^-$ и $e^+e^- \to \Upsilon(nS)\pi^+\pi^-$, имеющих аномально большие сечения [24, 25]. В анализе использовались данные с интегральной светимостью 121.4 fb⁻¹, набранные экспериментом Belle в пике резонанса $\Upsilon(5S)$.

В отличие от чармония, где h_c восстанавливались в переходе $h_c \to \eta_c \gamma$ с последующим восстановлением η_c в адронных каналах, для боттомония вероятности эксклюзивных распадов очень малы. Сигнал $e^+e^- \to \Upsilon(5S) \to h_b(nP)\pi^+\pi^-$ восстанавливался инклюзивно с использованием недостающей массы $\pi^+\pi^-$ пар:

$$M_{\rm miss}(\pi^+\pi^-) = \sqrt{(E_{\rm c.m.} - E^*_{\pi^+\pi^-})^2 - p^{*2}_{\pi^+\pi^-}},\tag{1}$$

где $E_{\text{с.m.}}$ – энергия сталкивающихся e^+e^- пучков в системе их центра масс (ц.м.), $E^*_{\pi^+\pi^-}$ и $p^*_{\pi^+\pi^-}$ – энергия и импульс $\pi^+\pi^-$ пары в системе ц.м.

В качестве калибровочных каналов мы использовали ранее обнаруженные переходы $\Upsilon(5S) \to \Upsilon(nS)\pi^+\pi^-$, восстановленные эксклюзивно в конечном состоянии $\mu^+\mu^-\pi^+\pi^-$ [25]. Мы отбирали хорошо восстановленные и положительно идентифицированные треки, исходящие из точки e^+e^- взаимодействия. Распределение $M(\mu^+\mu^-)$ относительно $M_{\rm miss}(\pi^+\pi^-)$ для отобранных $\mu^+\mu^-\pi^+\pi^-$ комбинаций показано на Рис. 1 (а). Здесь видно много

Рис. 1: (а) Распределение $M(\mu^+\mu^-)$ относительно $M_{\text{miss}}(\pi^+\pi^-)$ для отобранных $\mu^+\mu^-\pi^+\pi^-$ комбинаций. (b) Проекция диагональной полосы $|M(\mu^+\mu^-) - M_{\text{miss}}(\pi^+\pi^-)| < 150 \text{MeV}/c^2$ на $M_{\text{miss}}(\pi^+\pi^-)$ в области $\Upsilon(1S)$.

кластеров, каждый из которых соответствует определенному двухпионному переходу между состояниями $\Upsilon(nS)$. Так, полностью восстановленные распады $\Upsilon(5S) \to \Upsilon(nS)\pi^+\pi^-$ (n = 1, 2, 3) расположены вдоль диагонали $M(\mu^+\mu^-) = M_{\rm miss}(\pi^+\pi^-)$; здесь же присутствует небольшой фон от нерезонансного процесса $ee \to \mu^+\mu^-\pi^+\pi^-$ и от процесса с излучением фотонов в начальном состоянии $e^+e^- \to \mu^+\mu^-\gamma(\to e^+e^-)$, где фотон конвертировал на веществе детектора, а e^+e^- пара была неправильно идентифицирована как $\pi^+\pi^-$ (этот фон был значительно подавлен дополнительным требованием на угол раствора между импульсами $\pi^+\pi^-$ в лабораторной системе $\cos \theta_{\pi^+\pi^-} < 0.95$). Примерами переходов, дающих кластеры в области ниже диагонали, являются $\Upsilon(2S) \to \Upsilon(1S)\pi^+\pi^-$ и $\Upsilon(3S) \to \Upsilon(1S)\pi^+\pi^-$, где $\Upsilon(2S)$ и $\Upsilon(3S)$ рождаются инклюзивно в распадах $\Upsilon(5S)$ или в процессе радиационного возврата. Соответствующие распределения по $M_{\rm miss}(\pi^+\pi^-)$ имеют допплеровское уширение из-за движения материнской частицы и пикуются при $M_{\rm miss}(\pi^+\pi^-) \sim 10.30 \,{\rm GeV}/c^2$ и 9.97 GeV/ c^2 соответственно.

Проекция диагональной полосы $|M(\mu^+\mu^-) - M_{\rm miss}(\pi^+\pi^-)| < 150 {\rm MeV}/c^2$ на $M_{\rm miss}(\pi^+\pi^-)$ в области $\Upsilon(1S)$ показана на Рис. 1 (b). Именно это распределение, а также аналогичные распределения для $\Upsilon(2S)$ и $\Upsilon(3S)$, использовались при калибровке. Сигнал был описан Crystal Ball-функцией (гауссиана с гладко пришитым степенным "хвостом"), типичное значение разрешения $\sigma = 6 {\rm MeV}/c^2$ связано с разбросом энергий e^+e^- взаимодействия. "Хвост" с правой стороны соответствует излучению мягких фотонов в начальном состоянии и содержит ~ 8% событий.

Для инклюзивного восстановления переходов $\Upsilon(5S) \rightarrow h_b(nP)$ мы использовали стандартный отбор адронных событий, в котором применяются требования на положение общей вершины события, множественность треков и суммарные энергию и импульс события. Эти требования направлены на подавление взаимодействий с остаточным газом в вакуумной трубе, Бабарассеяния ($e^+e^- \to e^+e^-$), рождения $\tau^+\tau^-$ и двухфотонных процессов. Адронные события в континууме, т.е. $e^+e^- \rightarrow q\bar{q}~(q=u,~d,~s,~c)$, имеют форму двух струй, в отличие от сферически-симметричных глюонных распадов боттомония. Для разделения событий с разной формой мы использовали отношение R_2 второго и нулевого моментов Фокса-Вольфрама, $R_2 < 0.3$ [26]. Распределение по недостающей массе для $\pi^+\pi^-$ пар в отобранных событиях показано на Рис. 2. Заметим, что сигналы едва ли различимы глазом, однако статистическая точность в каждом бине очень высокая ($\sim 10^{-3}$), поэтому даже небольшое отклонение от гладкого распределения имеет высокую значимость. Гладкий фон был описан полиномом высокой степени. Для понижения степени полинома интервал фитирования $(9.3, 10.45) \,\mathrm{GeV}/c^2$ был

Рис. 2: Распределение по недостающей массе отобранных $\pi^+\pi^-$ пар (сплошная гистограмма) и вклад процесса $K_S^0 \to \pi^+\pi^-$, умноженный на 10, чтобы сделать его различимым (пунктирная гистограмма). Вертикальные линии показывают ожидаемые положения сигналов (слева направо) $\Upsilon(1S)$, $h_b(1P)$, $\Upsilon(2S)$, $h_b(2P)$ и $\Upsilon(3S)$.

разделен на три части с границами при 9.8 и 10.1 GeV/ c^2 , которые фитировались независимо; в первых двух использовались полиномы шестой степени, в третьей – седьмой. Оказалось, что вклад распадов $K_S^0 \to \pi^+\pi^-$ имеет форму ступеньки (см. Рис. 2). Мы нашли этот вклад фитированием $M(\pi^+\pi^-)$ спектров в бинах по $M_{\rm miss}(\pi^+\pi^-)$ и вычли. Результат фитирования распределения по $M_{\rm miss}(\pi^+\pi^-)$ после вычитания комбинаторного фона и вклада $K_S^0 \to \pi^+\pi^-$ показан на Рис. 3. Кроме значительного количества пиков, уже наблюдавшихся при восстановлении $\mu^+\mu^-\pi^+\pi^-$ комбинаций, видны сигналы рождения $h_b(1P)$ и $h_b(2P)$, их выход составил (50.0 ± 7.8^{+4.5}_{-9.1}) × 10³ и (84.0 ± 6.8⁺²³_{-10.}) × 10³ соответственно. Здесь и далее первая ошибка статистическая, вторая – систематическая.

Для изучения систематической ошибки мы увеличивали степень полинома, варьировали диапазоны фитирования, учитывали неопределенность в форме сигнала, изменяли критерии отбора. Отклонения измеренных масс $\Upsilon(1S)$, $\Upsilon(2S)$ и $\Upsilon(3S)$ от табличных значений [28] при инклюзивном восстановлении несколько больше чем при эксклюзивном и составляют приблизительно $\pm 1 \,\mathrm{MeV}/c^2$. Этот разброс статистически не очень значим и, возможно, связан с локальными изменениями формы фона, которые плохо описываются полиномом. Для учета этого источника неопределенности

Рис. 3: Спектр $M_{\text{miss}}(\pi^+\pi^-)$ после вычитания комбинаторного фона и вклада $K_S^0 \to \pi^+\pi^-$ (точки с ошибками) и сигнальная компонента фитирующей функции (сплошная гистограмма). Вертикальные прерывистые линии показывают границы областей фитирования.

во все измерения массы введена дополнительная систематическая ошибка $\pm 1 \text{ MeV}/c^2$, которая является доминирующей. Значимости сигналов $h_b(1P)$ и $h_b(2P)$ с учетом систематической погрешности составили 5.5 σ и 11.2 σ соответственно.

Измеренные значения масс составили:

$$M_{h_b(1P)} = (9898.2^{+1.1+1.0}_{-1.0-1.1}) \,\mathrm{MeV}/c^2, \tag{2}$$

$$M_{h_b(2P)} = (10259.8 \pm 0.6^{+1.4}_{-1.0}) \,\mathrm{MeV}/c^2.$$
(3)

Сверхтонкие расщепления $\Delta M_{\rm HF}(nP) \equiv \langle M_{\chi_{bJ}(nP)} \rangle - M_{h_b(nP)}$ с использованием табличных значений для $m_{\chi_{bJ}}$ [28] составили $\Delta M_{\rm HF}(1P) = (+1.7 \pm 1.5) \,{\rm MeV}/c^2$ и $\Delta M_{\rm HF}(2P) = (+0.5^{+1.6}_{-1.2}) \,{\rm MeV}/c^2$, здесь статистическая и систематическая погрешности сложены квадратично. Значения согласуются с нулем, как предсказывают вычисления в пертурбативной КХД [29, 30]. Этот результат показывает, что обмен мягкими глюонами не дает заметного вклада в спин-спиновое взаимодействие в *P*-волновых мультиплетах [31]. Такое заключение подтверждается прямыми решеточными вычислениями [32].

Были измерены отношения сечений

$$\frac{\sigma[e^+e^- \to \Upsilon(5S) \to h_b(1P)\pi^+\pi^-]}{\sigma[e^+e^- \to \Upsilon(5S) \to \Upsilon(2S)\pi^+\pi^-]} = 0.45 \pm 0.08^{+0.07}_{-0.12},\tag{4}$$

$$\frac{\sigma[e^+e^- \to \Upsilon(5S) \to h_b(2P)\pi^+\pi^-]}{\sigma[e^+e^- \to \Upsilon(5S) \to \Upsilon(2S)\pi^+\pi^-]} = 0.77 \pm 0.08^{+0.22}_{-0.17}.$$
(5)

При оценке эффективности восстановления мы использовали результаты изучения резонансной структуры в этих переходах [4]. Эффективность требования $R_2 < 0.3$ была определена из данных.

Заметим, что в переходах $\Upsilon(5S) \to h_b(nP)\pi^+\pi^-$ происходит переворот спина *b* кварка, поэтому они должны быть подавлены как $(\Lambda_{\rm QCD}/m_b)^2$ по сравнению с переходами $\Upsilon(5S) \to \Upsilon(nS)\pi^+\pi^-$, где спин *b* кварка сохраняется. Отсутствие подавления свидетельствует об экзотическом механизме переходов в $h_b(nP)$.

Полученные результаты по $h_b(nP)$ положили основание для целого ряда дальнейших исследований, в частности, вошедшего в диссертацию изучения состояний $\eta_b(nS)$ и Z_b . Они также вызвали интерес к адронным переходам из $\Upsilon(4S)$, $\Upsilon(5S)$ и $\Upsilon(6S)$, плодотворное изучение которых продолжается.

В Главе 5 описано обнаружение радиационных переходов из $h_b(nP)$ в $\eta_b(mS)$. В результате обнаружено состояние $\eta_b(2S)$, и впервые точно измерены параметры $\eta_b(1S)$. В этой главе представлено также "закрытие" ложного сигнала $\eta_b(2S)$, полученного группой К. Сета на основании данных эксперимента CLEO.

Ожидается, что вероятность радиационных переходов $h_b(nP) \rightarrow \eta_b(mS)\gamma$ составляет несколько десятков процентов [34], поэтому наличие больших образцов инклюзивно восстановленных $h_b(nP)$ дает возможность изучать $\eta_b(mS)$. Состояние $\eta_b(1S)$ было обнаружено в эксперименте BaBar в 2008 году [33]. Измеренное значение массы оказалось несколько ниже, чем теоретические предсказания; ширина не была измерена. Экспериментальной информации по состоянию $\eta_b(2S)$ на момент публикации не было. В анализе использовались данные, набранные в пике резонанса $\Upsilon(5S)$, с интегральной светимостью 121.4 fb⁻¹, а также данные сканирования вблизи $\Upsilon(5S)$ с интегральной светимостью 12.0 fb⁻¹. Представленные здесь результаты опубликованы в работе [2].

Искомый сигнал $e^+e^- \rightarrow \Upsilon(5S) \rightarrow h_b(nP)\pi^+\pi^- \rightarrow \eta_b(mS)\gamma\pi^+\pi^-$ дает кластер в двумерном распределении $M_{\rm miss}(\pi^+\pi^-)$ относительно $M_{\rm miss}(\pi^+\pi^-\gamma)$. Однако из-за очень высокого комбинаторного фона контролировать качество двумерного фита сложно. Поэтому мы фитировали $M_{\text{miss}}(\pi^+\pi^-)$ спектры в бинах по переменной $M_{\text{miss}}^{(n)}(\pi^+\pi^-\gamma) \equiv M_{\text{miss}}(\pi^+\pi^-\gamma) - M_{\text{miss}}(\pi^+\pi^-) + m_{\text{h}_{b}(nP)}$, которая, в отличии от $M_{\text{miss}}(\pi^+\pi^-\gamma)$, не коррелирует с $M_{\text{miss}}(\pi^+\pi^-)$.

Критерии отбора адронных событий и $\pi^+\pi^-$ пар такие же, как в анализе $h_b(nP)$ [1]. Дополнительно применялось требование промежуточных Z_b -состояний: 10.59 $< M_{\rm miss}(\pi) < 10.67 \,{\rm MeV}/c^2$, позволившее подавить фон в 5 [1.6] раз в области $h_b(1P)$ [$h_b(2P)$] без существенных потерь сигналов. (Изучение резонансной структуры распада $\Upsilon(5S) \rightarrow h_b(nP)\pi^+\pi^-$ и обнаружение состояний $Z_b(10610)$ и $Z_b(10650)$ описано в следующей главе.) При восстановлении фотонов использовались кластеры в электромагнитном калориметре, не связанные с треками, и применялось вето на π^0 мезоны. При фитировании $M_{\rm miss}(\pi^+\pi^-)$ спектров в бинах по $M_{\rm miss}^{(n)}(\pi^+\pi^-\gamma)$ значения масс всех пикующихся компонент были зафиксированы, а полином Чебышева, описывающий фон, умножался на результат фита к полному $M_{\rm miss}(\pi^+\pi^-)$ спектру, что позволило понизить степень полинома. Найденные зависимости выходов $h_b(1P)$ и $h_b(2P)$ от $M_{\rm miss}^{(1)}(\pi^+\pi^-\gamma)$ и $M_{\rm miss}^{(2)}(\pi^+\pi^-\gamma)$ соответственно показаны на Рис. 4. Видны четкие сигналы $\eta_b(1S)$ и $\eta_b(2S)$, отсутствие других пикующихся вкладов согласуется с результатами моделирования.

Для параметризации сигнала использовалась свертка нерелятивистской функции Брейта-Вигнера и разрешения, которое было откалибровано с использованием распадов $\pi^0 \to \gamma\gamma$, $\eta \to \gamma\gamma$ и $D^{*0} \to D^0\gamma$. Фон был описан экспонентой от полинома первой [второй] степени в области $\eta_b(1S)$ [$\eta_b(2S)$]. Спектры $M_{\text{miss}}^{(1)}(\pi^+\pi^-\gamma)$ и $M_{\text{miss}}^{(2)}(\pi^+\pi^-\gamma)$ с сигналами $\eta_b(1S)$ фитировались одновременно. Уровень достоверности фита для области $\eta_b(1S)$ [$\eta_b(2S)$] составил 61% [36%]. Найденные из фитирования выходы сигналов составили: $N_{1P\to 1S} = (23.5 \pm 2.0) \times 10^3$, $N_{2P\to 1S} = (10.3 \pm 1.3) \times 10^3$ и $N_{2P\to 2S} =$ $(25.8 \pm 4.9) \times 10^3$; их значимости: 15σ , 9σ и 4.2σ соответственно (значимости включают систематическую ошибку, а в случае $\eta_b(2S)$ – еще и "lookelsewhere" эффект). Измеренные массы и ширины составили:

$$m_{\eta_b(1S)} = (9402.4 \pm 1.5 \pm 1.8) \,\mathrm{MeV}/c^2,$$
(6)

$$\Gamma_{\eta_b(1S)} = (10.8 + 4.0 + 4.5) \text{ MeV}, \tag{7}$$

$$m_{\eta_b(2S)} = (9999.0 \pm 3.5 {+2.8 \atop -1.9}) \,\mathrm{MeV}/c^2.$$
 (8)

Получен также верхний предел $\Gamma_{\eta_b(2S)} < 24$ MeV на 90% уровне достоверности.

Для оценки систематических ошибок мы варьировали интервалы фитирования и степени полинома в $M_{\text{miss}}(\pi^+\pi^-)$ и $M_{\text{miss}}^{(n)}(\pi^+\pi^-\gamma)$ фитах, изменяли

Рис. 4: Зависимости выходов $h_b(1P)$ от $M_{\text{miss}}^{(1)}(\pi^+\pi^-\gamma)$ (a), $h_b(2P)$ от $M_{\text{miss}}^{(2)}(\pi^+\pi^-\gamma)$ в области $\eta_b(1S)$ (b) и в области $\eta_b(2S)$ (c). Сплошная (прерывистая) гистограмма показывает результат фитирования (фоновую компоненту фитирующей функции).

бинирование $M_{\text{miss}}^{(n)}(\pi^+\pi^-\gamma)$, умножали нерелятивистскую функцию Брейта-Вигнера на фактор E_{γ}^3 , характерный для электрических дипольных переходов. Мы также учитывали неопределенности в калибровке и в массе $h_b(nP)$.

Для вероятностей переходов получены следующие значения:

$$\mathcal{B}[h_b(1P) \to \eta_b(1S)\gamma] = (49.2 \pm 5.7 ^{+5.6}_{-3.3})\%, \tag{9}$$

$$\mathcal{B}[h_b(2P) \to \eta_b(1S)\gamma] = (22.3 \pm 3.8 \,{}^{+3.1}_{-3.3})\%,\tag{10}$$

$$\mathcal{B}[h_b(2P) \to \eta_b(2S)\gamma] = (47.5 \pm 10.5 \,{}^{+6.8}_{-7.7})\%. \tag{11}$$

Эффективность восстановления фотона была найдена из моделирования, эффективности требования на форму события и π^0 вето – из данных.

Измерения $m_{\eta_b(2S)}$ и $\Gamma_{\eta_b(1S)}$ выполнены впервые; измерение $m_{\eta_b(1S)}$ яв-

ляется более точным, чем мировое среднее 2012 года [28], и находится на $(11.4 \pm 3.6) \text{ MeV}/c^2$ выше центрального значения. В мае 2014 года эксперимент Belle сообщил предварительные результаты измерения параметров $\eta_b(1S)$ в канале $\Upsilon(4S) \rightarrow \eta h_b(1P) [\rightarrow \gamma \eta_b(1S)]$ [20]. Найденные значения $m_{\eta_b(1S)} = (9405.3 \pm 1.3 \pm 3.0) \text{ MeV}/c^2$, $\Gamma_{\eta_b(1S)} = (11^{+8}_{-6} \pm 3) \text{ MeV}$ и $\mathcal{B}(h_b(1P) \rightarrow \gamma \eta_b(1S)) = (52 \pm 11 \pm 4)\%$ подтвердили представленные здесь результаты. Предыдущие измерения $m_{\eta_b(1S)}$ [28] были выполнены в подавленных M1 переходах $\Upsilon(2S, 3S) \rightarrow \eta_b(1S)\gamma$, которые могут содержать неучтенные форм-факторы.

Сверхтонкие расщепления $\Delta M_{\rm HF}(nS) \equiv m_{\Upsilon(nS)} - m_{\eta_b(nS)}$ составили:

$$\Delta M_{\rm HF}(1S) = (57.9 \pm 2.3) \,\,{\rm MeV}/c^2 \tag{12}$$

$$\Delta M_{\rm HF}(2S) = (24.3^{+4.0}_{-4.5}) \,\mathrm{MeV}/c^2, \tag{13}$$

их отношение равно 0.420^{+0.071}_{-0.079}. Здесь статистическая и систематическая погрешности сложены квадратично. Графическое сравнение измеренных значений с теоретическими предсказаниями показано на Рис. 5, взятом из работы [35]. Большинство решеточных вычислений находится в согласии с результатом Belle, включая самое последнее вычисление, не показанное на Рис. 5, которое дает $\Delta M_{\rm HF}(1S) = (62.8 \pm 6.7) \,\,{\rm MeV}\,$ и $\Delta M_{\rm HF}(2S)/\Delta M_{\rm HF}(1S) =$ 0.425 ± 0.025 [36]. В этом вычислении учтены зависящие от спина релятивистские поправки до порядка $O(v^6)$, радиационные поправки к лидирующему спин-магнитному взаимодействию, непертурбативные четырехкварковые взаимодействия и эффект поляризации морских *u*, *d*, *s* и *c* кварков. Наблюдается также согласие с предсказанием модельно-независимого массового соотношения и значительного количества потенциальных моделей. Измеренное значение ширины $\eta_b(1S)$ также согласуется с теоретическими ожиданиями, находящимися в диапазоне от 4 до 20 MeV [37, 38, 39]. Вероятности радиационных переходов из $h_b(nP)$ несколько выше, чем предсказания модели [34].

Было выполнено уточнение масс $h_b(1P)$ и $h_b(2P)$, связанное с подавлением фона требованием промежуточных Z_b и увеличением статистики на 10%: $m_{h_b(1P)} = (9899.1 \pm 0.4 \pm 1.0) \text{ MeV}/c^2$, $m_{h_b(2P)} = (10259.8 \pm 0.5 \pm 1.1) \text{ MeV}/c^2$. Новые значения сверхтонких расщеплений в *P*-мультиплетах составили:

$$\Delta M_{\rm HF}(1P) = (+0.8 \pm 1.1) \,\,{\rm MeV}/c^2,\tag{14}$$

$$\Delta M_{\rm HF}(2P) = (+0.5 \pm 1.2) \,\,{\rm MeV}/c^2. \tag{15}$$

Рис. 5: Экспериментальные данные и теоретические предсказания для сверхтонких расщеплений 1S и 2S состояний боттомония. Измерения эксперимента Belle [2] и группы К. Сета [40] показаны точками с ошибками. Предсказания различных решеточных вычислений показаны затемненными четырехугольниками, пертурбативные оценки отношения расщеплений – прерывистыми линиями, результаты потенциальных моделей – кружочками.

В 2012 году группа К. Сета из университета North Western, США сообщила об обнаружении нового состояния $X_{b\bar{b}}$ в радиационном переходе $\Upsilon(2S) \rightarrow X_{b\bar{b}}\gamma$ [40] с использованием образца данных эксперимента CLEO III, содержащего 9.3×10^6 распадов $\Upsilon(2S)$. Состояние $X_{b\bar{b}}$ восстанавливалось эксклюзивно по 26 адронным конечным состояниям:

$$\begin{split} &2(\pi^{+}\pi^{-}), \ 3(\pi^{+}\pi^{-}), \ 4(\pi^{+}\pi^{-}), \ 5(\pi^{+}\pi^{-}), \\ &K^{+}K^{-}\pi^{+}\pi^{-}, \ K^{+}K^{-}2(\pi^{+}\pi^{-}), \ K^{+}K^{-}3(\pi^{+}\pi^{-}), \ K^{+}K^{-}4(\pi^{+}\pi^{-}), \\ &2(K^{+}K^{-}), \ 2(K^{+}K^{-})\pi^{+}\pi^{-}, \ 2(K^{+}K^{-}\pi^{+}\pi^{-}), \ 2(K^{+}K^{-})3(\pi^{+}\pi^{-}), \\ &\pi^{+}\pi^{-}p\bar{p}, \ 2(\pi^{+}\pi^{-})p\bar{p}, \ 3(\pi^{+}\pi^{-})p\bar{p}, \ 4(\pi^{+}\pi^{-})p\bar{p}, \\ &\pi^{+}\pi^{-}K^{+}K^{-}p\bar{p}, \ 2(\pi^{+}\pi^{-})K^{+}K^{-}p\bar{p}, \ 3(\pi^{+}\pi^{-})K^{+}K^{-}p\bar{p}, \\ &K^{0}_{S}K^{\pm}\pi^{\mp}, \ K^{0}_{S}K^{\pm}\pi^{\mp}\pi^{+}\pi^{-}, \ K^{0}_{S}K^{\pm}\pi^{\mp}2(\pi^{+}\pi^{-}), \ K^{0}_{S}K^{\pm}\pi^{\mp}3(\pi^{+}\pi^{-}), \\ &2K^{0}_{S}(\pi^{+}\pi^{-}), \ 2K^{0}_{S}2(\pi^{+}\pi^{-}) \ \mathbf{u} \ 2K^{0}_{S}3(\pi^{+}\pi^{-}). \end{split}$$

Значимость сигнала была оценена как 4.4σ , измеренная масса составила $(9974.6 \pm 2.3 \pm 2.1) \text{ MeV}/c^2$. Состояние интерпретировалось как $\eta_b(2S)$, при этом сверхтонкое расщепление составило $\Delta M_{\rm HF}(2S) = (48.6 \pm 3.1) \text{ MeV}/c^2$. Такое значение противоречит большинству теоретических вычислений (см. Рис. 5). Разногласие с экспериментом Belle находилось на уровне 5σ .

В последнем разделе Главы 5 представлен поиск состояния $X_{b\bar{b}}$ в распаде $\Upsilon(2S) \to X_{b\bar{b}}\gamma$ с использованием данных с интегральной светимостью 24.7 fb⁻¹, набранными экспериментом Belle в пике резонанса $\Upsilon(2S)$. Данные содержат (157.8 ± 3.6) × 10⁶ распадов $\Upsilon(2S)$, что приблизительно в 17 раз больше, чем в работе [40]. Для изучения фона от событий $e^+e^- \to q\bar{q}$ в континууме использовались данные с интегральной светимостью 89.5 fb⁻¹, набранные на 60 MeV ниже резонанса $\Upsilon(4S)$. Представленные здесь результаты опубликованы в работе [3].

Мы рассматривали те же 26 мод, что и в работе [40]. При восстановлении фотонов мы не использовали торцевые части калориметра, где повышен фон от ускорителя. Для подавления фона от процессов в континууме применялось требование на угол между импульсом фотона и трастом остатка события $|\cos \theta_T| < 0.8$. Для комбинаций адронной системы и фотона применялись требования на энергию и импульс, а также был выполнен 4*C*кинематический фит. Распределение по $\Delta M \equiv M[(b\bar{b})\gamma] - M(b\bar{b})$ показано на Рис. 6 для данных континуума и $\Upsilon(2S)$. Согласно моделированию, ожидаемая значимость $X_{b\bar{b}}$ превышает 10 σ . Такого сигнала нет, наблюдается только триплет $\chi_{bJ}(1P)$.

Для параметризации фона использовалась сумма экспоненты и полинома первой степени. Экспонента описывает ускорительный фон и шумы, полином – излучение фотонов в конечном состоянии, а также фон от π^0 , который начинает доминировать при $\Delta M \geq 0.15 \text{GeV}/c^2$. В работе [40] использовалась только экспонента, и, следовательно, фон от излучения фотонов в конечном состоянии не учитывался. Модель фона была неполной, что, по-видимому, привело к завышению значимости $X_{b\bar{b}}$. Выход $X_{b\bar{b}}$ из фита составил -30 ± 19 событий, верхний предел на произведение вероятностей:

$$\mathcal{B}[\Upsilon(2S) \to X_{b\bar{b}}\gamma] \times \sum_{i} \mathcal{B}[X_{b\bar{b}} \to h_i] < 4.9 \times 10^{-6}$$
(16)

на 90% уровне достоверности, что на порядок меньше центрального значения из работы [40].

Таким образом, состояние $X_{b\bar{b}}$ [40] надежно закрыто в эксперименте со значительно большей статистикой. Аномальное значение $\Delta M_{\rm HF}(2S)$ не подтвердилось, следовательно, трудностей в описании сверхтонкого расщепления на сегодняшний день не выявлено.

Глава 6 посвящена состояниям $Z_b(10610)$ и $Z_b(10650)$. Мы описываем их обнаружение и измерение параметров в канале $h_b(nP)\pi^{\pm}$. Представлены

Рис. 6: Распределение по ΔM для данных, набранных в континууме на 60 MeV ниже пика $\Upsilon(4S)$ (сверху) и для данных $\Upsilon(2S)$ (снизу). Точки с ошибками – данные; синяя сплошная линия – результат фитирования, прерывистая – фоновая компонента в фите (сверху совпадает с полным фитом); (внизу) красные пунктирные линии показывают вклад $\chi_{bJ}(1P)$, вкладка показывает область $X_{b\bar{b}}$.

также результаты их феноменологического изучения.

Как описано в Главе 4, измерения Belle показали, что процесс $\Upsilon(5S) \rightarrow h_b(nP)\pi^+\pi^-$, требующий переворота спина тяжелого кварка, не подавлен по сравнению с сохраняющим спин процессом $\Upsilon(5S) \rightarrow \Upsilon(nS)\pi^+\pi^-$ [1]. Для дальнейшего изучения этого аномального явления был выполнен анализ резонансной структуры в переходах $\Upsilon(5S) \rightarrow h_b(nP)\pi^+\pi^-$ (n = 1, 2)и $\Upsilon(5S) \rightarrow \Upsilon(nS)\pi^+\pi^-$ (n = 1, 2, 3). Использовались данные эксперимента Belle, набранные в пике резонанса $\Upsilon(5S)$, с интегральной светимостью 121.4 fb⁻¹. Эти результаты опубликованы в работе [4].

Для изучения резонансной структуры распадов $\Upsilon(5S) \to h_b(nP)\pi^+\pi^-$ (m = 1, 2) мы измеряли их выход в зависимости от инвариантной массы $h_b(1P)\pi^{\pm}$. Распады восстанавливались инклюзивно с использованием недостающей массы $\pi^+\pi^-$ пар. Мы фитировали спектры $M_{\rm miss}(\pi^+\pi^-)$ в бинах по инвариантной массе $h_b(nP)\pi^{\pm}$, определенной как недостающая масса ко второму пиону в событии, $M_{\text{miss}}(\pi^{\mp})$. Мы складывали спектры $M_{\text{miss}}(\pi^{+}\pi^{-})$ для одинаковых бинов по $M_{\text{miss}}(\pi^{+})$ и $M_{\text{miss}}(\pi^{-})$ и рассматривали только часть диапазона $M_{\text{miss}}(\pi)$, что позволило избежать двойного счета (см. Рис. 7).

Рис. 7: Распределение $M_{\text{miss}}(\pi^{-})$ относительно $M_{\text{miss}}(\pi^{+})$ для моделирования сигнальных событий $\Upsilon(5S) \to h_b(1P)\pi^+\pi^-$ (слева) и $\Upsilon(5S) \to h_b(2P)\pi^+\pi^-$ (справа).

Отбор событий и процедура фитирования распределений по $M_{\rm miss}(\pi^+\pi^-)$ такие же, как описано в Главе 4 [1]. Мы рассматривали все хорошо восстановленные и положительно идентифицированные $\pi^+\pi^-$ пары в адронных событиях. Фон от процесса $e^+e^- \to q\bar{q}$ (q = u, d, s) в континууме подавлен требованием на отношение второго и нулевого моментов Фокса-Вольфрама $R_2 < 0.3$ [26]. Фитирующая функция является суммой пикующихся компонент, связанных с двухпионными переходами, и комбинаторного фона. Положения всех пикующихся компонент зафиксированы в соответствии с результатами работы [1]. В случае $h_b(1P)$ пикующиеся компоненты – это сигналы переходов $\Upsilon(5S) \to h_b(1P)$ и $\Upsilon(5S) \to \Upsilon(2S)$, а также отражение от перехода $\Upsilon(3S) \to \Upsilon(1S)$, где $\Upsilon(3S)$ рождается инклюзивно или через излучение фотонов в начальном состоянии. Поскольку отражение $\Upsilon(3S) \to \Upsilon(1S)$ имеет большую ширину и плохо определяется из фита, мы измерили его нормировку по отношению к сигналу $\Upsilon(5S) \to \Upsilon(2S)$ в эксклюзивных $\mu^+\mu^-\pi^+\pi^$ данных для каждого $M_{\rm miss}(\pi^+)$ бина.

В случае $h_b(2P)$ мы использовали меньший интервал фитирования, чем в работе [1], $M_{\rm miss}(\pi^+\pi^-) < 10.34 \,{\rm GeV}/c^2$. Это позволило исключить область

отражения от распадов $K_S^0 \to \pi^+\pi^-$. Пикующиеся компоненты здесь – это сигнал $\Upsilon(5S) \to h_b(2P)$ и отражение $\Upsilon(2S) \to \Upsilon(1S)$. Мы вводили ограничение на выход отражения $\Upsilon(2S) \to \Upsilon(1S)$ в каждом $M_{\text{miss}}(\pi^+)$ бине, используя эксклюзивные $\mu^+\mu^-\pi^+\pi^-$ данные, отнормированные к полному выходу отражения в инклюзивных данных.

Комбинаторный фон был параметризован полиномом Чебышева. Мы использовали степени от 6 до 10 для $h_b(1P)$ [степень монотонно уменьшалась с $M_{\text{miss}}(\pi^+)$] и от 6 до 8 для $h_b(2P)$.

Результаты для выхода распадов $\Upsilon(5S) \to h_b(nP)\pi^+\pi^-$ (n = 1, 2) в зависимости от $M_{\text{miss}}(\pi)$ показаны на Рис. 8. Распределение для $h_b(1P)$ имеет

Рис. 8: Выход (а) $h_b(1P)$ и (b) $h_b(2P)$ в зависимости от $M_{\text{miss}}(\pi^+)$ (точки с ошибками) и результат фитирования (гистограмма).

четкую двухпиковую структуру, распределение для $h_b(2P)$ имеет схожую форму, хотя фазовый объем здесь заметно меньше. Мы интерпретируем обнаруженные пики как сигналы новых состояний, получивших названия $Z_b(10610)$ и $Z_b(10650)$.

Для фитирования распределений по $M_{\rm miss}(\pi)$ мы использовали выражение

$$|BW_1(s, M_1, \Gamma_1) + ae^{i\phi}BW_1(s, M_2, \Gamma_2) + be^{i\psi}|^2 \frac{qp}{\sqrt{s}}.$$
 (17)

Здесь $\sqrt{s} \equiv M_{\text{miss}}(\pi)$; параметры M_k , Γ_k (k = 1, 2), a, ϕ, b и ψ являются свободными; $\frac{qp}{\sqrt{s}}$ – фактор фазового объема, p[q] – импульс пиона, рожденного в распаде $\Upsilon(5S)[Z_b]$, измеренный в системе покоя материнской частицы. Использовалось следующее выражение для P-волновой ам-

плитуды Брейта-Вигнера: $BW_1(s, M, \Gamma) = \frac{\sqrt{M\Gamma}F(q/q_0)}{M^2 - s - iM\Gamma}$. Здесь F – это Pволновой форм-фактор Блата-Вайскопфа, $F = \sqrt{\frac{1+(q_0R)^2}{1+(qR)^2}}$ [41], q_0 – импульс дочерней частицы в предположении полюсной массы ее материнской частицы, $R = 1.6 \text{ GeV}^{-1}$ – характерный радиус адронной системы. Функция (17) была свернута с гауссианой, описывающей детекторное разрешение ($\sigma = 5.2 \text{ MeV}/c^2$), проинтегрирована в пределах каждого бина и поправлена на эффективность восстановления (см. Рис. 9). Результаты фитирования

Рис. 9: Эффективность восстановления $h_b(1P)$ (слева) и $h_b(2P)$ (справа) в зависимости от $M_{\text{miss}}(\pi)$.

показаны на Рис. 8 и в Таблице 1. Найдено, что нерезонансный вклад согласуется с нулем [значимость составляет 0.3σ как для $h_b(1P)$, так и для $h_b(2P)$] в согласии с ожидаемым подавлением из-за переворота спина тяжелого кварка. Для улучшения стабильности фита в случае $h_b(2P)$ нерезонансная амплитуда была зафиксирована в нуле. Уровень достоверности фита равен 81% (61%) для $h_b(1P)$ [$h_b(2P)$]. Гипотеза двух резонансов предпочтительнее гипотезы фазового объема на уровне 18 σ [6.7 σ] для $h_b(1P)$ [$h_b(2P)$].

Для оценки систематической погрешности мы варьировали степень полиномов при фитировании $M_{\text{miss}}(\pi^+\pi^-)$ спектров; для изучения эффекта от конечного бинирования по $M_{\text{miss}}(\pi^+)$ мы сдвигали бинирование на половину размера бина; для изучения модельной зависимости при фитировании распределения по $M_{\text{miss}}(\pi)$ мы исключали [добавляли] нерезонансную компонен-

Конечное состояние	$h_b(1P)\pi^+\pi^-$	$h_b(2P)\pi^+\pi^-$
$M_{Z_b(10610)}, \text{ MeV}/c^2$	$10605\pm2^{+3}_{-1}$	10599_{-3-4}^{+6+5}
$\Gamma_{Z_b(10610)}, \text{ MeV}$	$11.4_{-3.9-1.2}^{+4.5+2.1}$	13^{+10+9}_{-8-7}
$M_{Z_b(10650)}, \text{ MeV}/c^2$	$10654\pm3{}^{+1}_{-2}$	10651^{+2+3}_{-3-2}
$\Gamma_{Z_b(10650)}, \text{ MeV}$	$20.9^{+5.4+2.1}_{-4.7-5.7}$	$19\pm7{}^{+11}_{-7}$
Относительная нормировка	$1.39 \pm 0.37^{+0.05}_{-0.15}$	$1.6\substack{+0.6+0.4\\-0.4-0.6}$
Относительная фаза, градусы	187^{+44+3}_{-57-12}	$181_{-105-109}^{+65+74}$

Таблица 1: Параметры сигналов $Z_b(10610)$ и $Z_b(10650)$, измеренные в переходах $\Upsilon(5S) \rightarrow h_b(nP)\pi^+\pi^-$ (n = 1, 2).

ту в случае $h_b(1P)$ $[h_b(2P)]$; для учета возможного отличия между данными и моделированием мы увеличивали ширину функциии разрешения на 10%. Максимальное изменение параметров рассматривалось как систематическая погрешность. Наличие разброса $\pm 1 \text{ MeV}/c^2$ в положениях $\Upsilon(nS)$ пиков при инклюзивном измерении [1] также было включено в систематическую ошибку. Полная ошибка получена квадратичным сложением различных вкладов. Значимость $Z_b(10610)$ и $Z_b(10650)$ с учетом систематической погрешности составила 16.0 σ [5.6 σ] в случае $h_b(1P)$ [$h_b(2P)$].

Переходы $\Upsilon(5S) \to \Upsilon(nS)\pi^+\pi^-$ (n = 1, 2, 3) восстанавливались эксклюзивно в канале $\Upsilon(nS) \to \mu^+\mu^-$. Процедура восстановления похожа на описанную в Главе 4, где эти переходы использовались для калибровки. Распределения по $M(\Upsilon(nS)\pi)_{\max} = \max[M(\Upsilon(nS)\pi^+), M(\Upsilon(nS)\pi^-)]$ и $M(\pi^+\pi^-)$ для отобранных событий показаны на Рис. 10. Во всех конечных состояниях хорошо видны сигналы $Z_b(10610)$ и $Z_b(10650)$. Структура вблизи $M(\pi^+\pi^-) =$ $1.0 \text{ GeV}/c^2$ в канале $\Upsilon(1S)\pi^+\pi^-$ соответствует вкладу резонанса $f_0(980)$. В отличие от $h_b(nP)$, здесь наблюдается значительный нерезонансный вклад. Для извлечения параметров Z_b был выполнен двумерный амплитудный анализ. Эта часть анализа выполнена А. Ю. Гармашем (Институт ядерной физики им. Будкера, г. Новосибирск), она не вошла в диссертацию, мы кратко опишем ее для полноты.

Для амплитуды трехчастичного распада $\Upsilon(5S) \to \Upsilon(nS)\pi^+\pi^-$ использовалась следующая параметризация:

$$M = A_{Z_b(10610)} + A_{Z_b(10650)} + A_{f_0} + A_{f_2} + A_{\rm nr},$$
(18)

Рис. 10: Проекции диаграмм Далица на $M(\Upsilon(nS)\pi)_{\max}$ (слева) и $M(\pi^+\pi^-)$ (справа) для событий в сигнальных областях $\Upsilon(1S)$ (сверху), $\Upsilon(2S)$ (посередине), и $\Upsilon(3S)$ (снизу). Точки с ошибками – данные, гистограмма – результат фитирования, закрашенная гистограмма – вклад фона.

где $A_{Z_b(10610)}$ и $A_{Z_b(10650)}$ – амплитуды рождения состояний Z_b в канале $\Upsilon(nS)\pi$; A_{f_0} и A_{f_2} – амплитуды рождения скалярного $f_0(980)$ и тензорного $f_2(1270)$ состояний в канале $\pi^+\pi^-$; A_{nr} – нерезонансная амплитуда. Мы предполагали, что доминируют вклады, сохраняющие ориентацию спина тяжелых кварков, поэтому *все* процессы идут в *S*-волне. Для описания вкладов Z_b и $f_2(1270)$ использовалась функция Брейта-Вигнера, для $f_0(980)$ – функция Флате. Нерезонансная амплитуда параметризовалась как $A + B M^2(\pi^+\pi^-)$, где A и B – комплексные коэффициенты [42]. Фон оценивался из контрольных областей по $M_{\text{miss}}(\pi^+\pi^-)$. Для учета эффективности восстановления использовался непараметрический метод, описанный в работе [43]. Результаты фитирования показаны на Рис. 10 и в Таблице 2.

Таблица 2: Параметры сигналов $Z_b(10610)$ и $Z_b(10650)$, измеренные в переходах $\Upsilon(5S) \rightarrow \Upsilon(nS)\pi^+\pi^-$ (n = 1, 2, 3).

Конечное состояние	$\Upsilon(1S)\pi^+\pi^-$	$\Upsilon(2S)\pi^+\pi^-$	$\Upsilon(3S)\pi^+\pi^-$
$M_{Z_b(10610)}, \text{ MeV}/c^2$	$10611 \pm 4 \pm 3$	$10609 \pm 2 \pm 3$	$10608 \pm 2 \pm 3$
$\Gamma_{Z_b(10610)}, \text{ MeV}/c^2$	$22.3 \pm 7.7^{+3.0}_{-4.0}$	$24.2 \pm 3.1^{+2.0}_{-3.0}$	$17.6 \pm 3.0 \pm 3.0$
$M_{Z_b(10650)}, \text{ MeV}/c^2$	$10657 \pm 6 \pm 3$	$10651 \pm 2 \pm 3$	$10652\pm1\pm2$
$\Gamma_{Z_b(10650)}, \text{ MeV}/c^2$	$16.3 \pm 9.8^{+6.0}_{-2.0}$	$13.3 \pm 3.3^{+4.0}_{-3.0}$	$8.4\pm2.0\pm2.0$
Отн. нормировка	$0.57 \pm 0.21^{+0.19}_{-0.04}$	$0.86 \pm 0.11^{+0.04}_{-0.10}$	$0.96 \pm 0.14^{+0.08}_{-0.05}$
Отн. фаза, градусы	$58 \pm 43^{+4}_{-9}$	$-13 \pm 13^{+17}_{-8}$	$-9 \pm 19^{+11}_{-26}$

Итак, заряженные боттомониеподобные состояния $Z_b(10610)$ и $Z_b(10650)$ обнаружены в пяти различных каналах: $\Upsilon(nS)\pi^{\pm}$ (n = 1, 2, 3) и $h_b(mP)\pi^{\pm}$ (m = 1, 2). Параметры резонансов, измеренные в различных каналах, находятся в хорошем согласии, как видно из Рис. 11. Средние по пяти каналам составляют:

$$M_{Z_b(10610)} = 10607.2 \pm 2.0 \,\mathrm{MeV}/c^2,$$
(19)

$$\Gamma_{Z_b(10610)} = 18.4 \pm 2.4 \text{ MeV},$$
(20)

$$M_{Z_b(10650)} = 10652.2 \pm 1.5 \,\mathrm{MeV}/c^2,$$
 (21)

$$\Gamma_{Z_b(10650)} = 11.5 \pm 2.2 \text{ MeV},$$
(22)

где статистическая и систематическая ошибки сложены квадратично. Относительные нормировки $Z_b(10610)$ и $Z_b(10650)$ близки к единице для всех

Рис. 11: Сравнение масс и ширин состояний $Z_b(10610)$ и $Z_b(10650)$, измеренных в пяти различных каналах.

пяти каналов. Их относительные фазы совместимы с нулем для каналов $\Upsilon(nS)\pi^{\pm}$ и с 180° для $h_b(nP)\pi^{\pm}$. Рождение состояний Z_b насыщает переходы $\Upsilon(5S) \rightarrow h_b(nP)\pi^+\pi^-$ и ответственно за их большое сечение [1]. Поскольку $\Upsilon(5S)$ резонанс и пион имеют отрицательную *G*-четность, состояния Z_b имеют положительную *G*-четность.

Минимальный кварковый состав $Z_b(10610)$ и $Z_b(10650)$ является четырехкварковой комбинацией, а измеренные массы в пределах экспериментальных ошибок совпадают с порогами $B\bar{B}^*$ (10604.6 MeV/ c^2) и $B^*\bar{B}^*$ (10650.2 MeV/ c^2), что указывает на их молекулярную структуру. Возможные молекулярные состояния в области чармония первоначально обсужда-

лись М. Б. Волошиным и Л. Б. Окунем в 1976 году [44]. В предположении о молекулярной структуре удается объяснить все наблюдаемые свойства $Z_b(10610)$ и $Z_b(10650)$, а также выяснить механизм нарушения, симмотрии тажених кварков при рождении $h_1(nP)\pi^+\pi^-$. Розущ

рушения симметрии тяжелых кварков при рождении $h_b(nP)\pi^+\pi^-$. Результаты этого феноменологического исследования опубликованы в работе [5]. Для краткости состояния $Z_b(10610)$ и $Z_b(10650)$ здесь мы будем обозна-

чать как Z_b и Z'_b соответственно. Предположим, что на больших расстояниях $r \gg \Lambda_{QCD}^{-1}$ волновая функция Z_b и Z'_b – это волновая функция мезонных пар $B^*\bar{B} - B\bar{B}^*$ и $B^*\bar{B}^*$ соответственно, имеющих квантовые числа $I^G(J^P) = 1^+(1^+)$. Разложим эти волновые функции по собственным состояниям спина bb кварков. Получаем:

$$|Z'_{b}\rangle = \frac{1}{\sqrt{2}} \left(0^{-}_{\bar{b}b} \otimes 1^{-}_{\bar{Q}q} - 1^{-}_{\bar{b}b} \otimes 0^{-}_{\bar{Q}q} \right) , |Z_{b}\rangle = \frac{1}{\sqrt{2}} \left(0^{-}_{\bar{b}b} \otimes 1^{-}_{\bar{Q}q} + 1^{-}_{\bar{b}b} \otimes 0^{-}_{\bar{Q}q} \right) .$$
 (23)

Здесь $\bar{Q}q$ – легкая компонента, состоящая из легких кварков и глюонов и являющаяся изотриплетом. Поскольку в пределе большой m_b спин $b\bar{b}$ сохраняется, разложение (23) справедливо и на малых расстояниях $r \sim \Lambda_{QCD}^{-1}$, где B мезоны перекрываются.

Максимальное смешивание спиновых состояний тяжелых кварков в Z_b и Z'_b , описываемое уравнением (23), немедленно подразумевает, что эти резонансы распадаются как по каналам с орто- $[\Upsilon(nS)]$, так и с пара-боттомонием $[h_b(nP)]$, причем парциальные ширины этих распадов сравнимы. Более то-го, для каждого конкретного канала абсолютное значение константы связи с Z_b и с Z'_b одинаково. Знак в разложении (23) соответствует тому, что в канале $\Upsilon(nS)\pi^+\pi^-$ фаза между амплитудами Z_b и Z'_b равна нулю, а в канале $h_b(nP)\pi^+\pi^-$ – 180°. Таким образом, предположение о молекулярной структуре позволяет объяснить все основные свойства Z_b и Z'_b .

Далее, если бы массы Z_b и Z'_b совпадали, то амплитуды их рождения в канале $h_b(nP)\pi^+\pi^-$ взаимно сокращались бы из-за фазы 180° между амплитудами Брейта-Вигнера и одинаковых констант связи. Различие в массах Z_b и Z'_b связано с различием в массах B и B^* мезонов, которое, в свою очередь, является проявлением нарушения спиновой симметрии тяжелых кварков. Следовательно, в пределе $m_b \to \infty$, когда $M_B \to M_{B^*}$, переход $h_b(nP)\pi^+\pi^-$ исчезает. Последнее демонстрирует механизм нарушения спиновой симметрии тяжелых кварков в этом распаде.

Дальше в Главе 6 кратко описаны новые предварительные результаты Belle по изучению состояний $Z_b(10610)$ и $Z_b(10650)$. Во-первых, полный амплитудный анализ переходов $\Upsilon(5S) \to \Upsilon(nS)\pi^+\pi^-$ показал, что спин-четность $Z_b(10610)$ и $Z_b(10650)$ равна $J^P = 1^+$ [14], как и ожидалось для молекулярной структуры. Во-вторых, были обнаружены переходы $Z_b(10610) \to B\bar{B}^*$ и $Z_b(10650) \to B^*\bar{B}^*$, причем их вероятности оказались на уровне 80% [16]. При этом распад $Z_b(10650) \to B\bar{B}^*$ оказался подавленным, несмотря на то, что фазовый объем там гораздо больше. Такая картина согласуется с гипотезой молекулярной структуры. Действительно, распад молекулы на составляющие должен доминировать, если он кинематически разрешен. Подавленность $Z_b(10650) \to B\bar{B}^*$ означает, что примесь конфигурации $B\bar{B}^*$ в волновой функции $Z_b(10650)$ мала. Наконец, было обнаружено нейтральное состояние $Z_b(10610)^0$ и показано, что данные не противоречат существованию нейтрального состояния $Z_b(10650)^0$ [6].

В качестве альтернативы молекулярной структуре было предложено, что состояния Z_b состоят из цветных дикварка и антидикварка [45]. В такой модели канал $B^{(*)}\bar{B}^*$ не является выделенным и поэтому не должен доминировать. Более того, тяжелый (легкий) тетракварк сильнее связан с каналом $B\bar{B}^*$ ($B^*\bar{B}^*$). Предсказанная картина распадов Z_b полностью противоречит эксперименту, что делает маловероятной интерпретацию Z_b как связанных состояний дикварка и антидикварка.

Вопрос построения динамической модели молекулярных состояний остается открытым. Среди предложенных механизмов перерассеяние $B^{(*)}\bar{B}^*$ мезонов [46, 47], резонансы связанных каналов [48] и дейтроноподобная молекула, связанная обменом легкими мезонами в *t*-канале [49]. Эти механизмы тесно связаны между собой и соответствуют скорее количественным различиям, чем качественным. Успешная феноменологическая модель должна учитывать как перерассеяния в *s*-канале, так и обмен мезонами в *t*-канале. Предсказания формы линии Z_b и их использование для фитирования данных могли бы помочь в изучении вклада различных механизмов.

В Главе 7 представлен амплитудный анализ диаграммы Далица распада $\bar{B}^0 \to \chi_{c1} \pi^+ K^-$, в результате которого были обнаружены заряженные чармониеподобные состояния $Z(4050)^+$ и $Z(4250)^+$. Мотивацией для этой работы послужило обнаружение заряженного состояния $Z(4430)^+$ в распаде $B \to \psi(2S)\pi^+ K$. Использовались данные, набранные экспериментом Belle в пике резонанса $\Upsilon(4S)$ с интегральной светимостью 605 fb⁻¹ и содержащие 657 × 10⁶ пар $B\bar{B}$ мезонов. Представленные результаты опубликованы в работе [9].

Отбиралась цепочка распадов $\bar{B}^0 \to \chi_{c1}\pi^+K^-$, $\chi_{c1} \to J/\psi\gamma$, $J/\psi \to \ell^+\ell^ (\ell^+\ell^- = e^+e^-$ или $\mu^+\mu^-$). Использовались положительно идентифицированные треки, исходящие из области взаимодействия e^+e^- пучков. Для восстановления фотонов использовались кластеры в электромагнитном калориметре без указывающих на них заряженных треков. Для распада $J/\psi \to e^+e^-$ восстанавливались фотоны излучения в конечном состоянии и тормозного излучения, находящиеся в пределах 50 mrad от направлений импульсов e^+ и e^- . Массовые окна вокруг сигналов $J/\psi \to e^+e^-$, $J/\psi \to \mu^+\mu^-$, χ_{c1} и B составили ±50, ±30, ±30 и ±6 MeV/ c^2 соответственно, при этом при вычислении массы B мезона вместо суммарной энергии дочерних частиц использовалась энергия пучка, известная более точно. Для повышения точности в измерении импульсов мы фитировали в массу J/ψ , χ_{c1} и B мезоны; фитирование производилось до вычисления инвариантной массы соответствующей материнской частицы. Распределение по $\Delta E = \sum E_i - E_{\text{beam}}$, где $\sum E_i -$ суммарная энергия дочерних частиц B мезона в системе ц.м., E_{beam} – энергия пучка в системе ц.м., показано на Рис. 12. Также показан вклад кон-

Рис. 12: (слева) Распределение по ΔE для отобранных $\bar{B}^0 \to \chi_{c1} \pi^+ K^-$ кандидатов (гистограмма) и для контрольной области χ_{c1} (точки с ошибками). Вертикальные линии показывают сигнальную и контрольные области по ΔE . (справа) Диаграмма Далица распада $\bar{B}^0 \to \chi_{c1} \pi^+ K^-$ для сигнальной области по ΔE . Сплошные [прерывистые] линии показывают границы четырех вертикальных [трех горизонтальных] частей, которые используются для представления результатов фитирования на последующих рисунках. Координаты вертикальных [горизонтальных] линий составляют $M^2(K^-\pi^+) = 1.00 \,{\rm GeV}^2/c^4$, $1.75 \,{\rm GeV}^2/c^4$ и $2.37 \,{\rm GeV}^2/c^4$ [$M^2(\chi_{c1}\pi^+) = 16.0 \,{\rm GeV}^2/c^4$ и $19.3 \,{\rm GeV}^2/c^4$].

трольной области по массе χ_{c1} кандидатов, определенной как $140 \text{ MeV}/c^2 < |M(J/\psi\gamma) - m_{\chi_{c1}}| < 230 \text{ MeV}/c^2$. Контрольные области χ_{c1} описывают почти весь фон, следовательно, основным источником фона являются случайные фотоны. Выход $\bar{B}^0 \to \chi_{c1} \pi^+ K^-$ распадов, равный $2126 \pm 56 \pm 42$, был найден из фитирования распределения по ΔE с использованием гауссианы для описания сигнала и полинома второй степени для описания фона. Систематическая ошибка в выходе оценивалась варьированием интервала фитирования.

Для определения эффективности восстановления использовалось моде-

лирование с равномерным распределением по фазовому объему, взвешенное согласно результатам Далиц-анализа, описанного ниже. Эффективность составила (20.0 ± 1.4)%, где в неточность включены зависимость от модели фитирования диаграммы Далица; возможное различие между данными и моделированием для восстановления треков, фотонов и для идентификации; неопределенность в угловых распределениях распадов $\chi_{c1} \rightarrow J/\psi\gamma$ и $J/\psi \rightarrow \ell^+\ell^-$. Ошибки из этих источников сложены квадратично. Основной вклад дает возможное различие данных и моделирования. В предположении, что $\mathcal{B}(\Upsilon(4S) \rightarrow B^0 \bar{B}^0) = 50\%$, найдено:

$$\mathcal{B}(\bar{B}^0 \to \chi_{c1} \pi^+ K^-) = (3.83 \pm 0.10 \pm 0.39) \times 10^{-4}.$$
 (24)

Систематическая ошибка включает ошибку в эффективности (7.2%), систематическую ошибку в выходе сигнала (2.0%), ошибку из-за варьирования критериев отбора (3.9%), ошибку из-за формы ΔE сигнала (1.0%, мы рассматривали двойную гауссиану вместо одиночной) и неопределенность в вероятностях распадов χ_{c1} и J/ψ (5.3% и 1.0% соответственно [50]).

Сигнальная область по ΔE была определена как $|\Delta E| < 12$ MeV, контрольная – как 24 MeV $< |\Delta E| < 96$ MeV. Диаграмма Далица для сигнальной области по ΔE показана на Рис. 12. Видны следующие структуры: вертикальные полосы при $M^2(K^-\pi^+) \sim 0.8$ и $2 \,\text{GeV}^2/c^4$ из-за промежуточных резонансов $K^*(892)$ и $K^*(1430)$; отчетливая широкая полоса при $M^2(\chi_{c1}\pi^+) \sim 17 \,\text{GeV}^2/c^4$, соответствующая состоянию в канале $\chi_{c1}\pi^+$, которое мы обозначим Z^+ . Диаграммы Далица для контрольной области по ΔE и для событий моделирования, разыгранных равномерно по фазовому объему, гладкие и не имеют структур. Наблюдается уменьшение эффективности в верхней (нижней) части диаграммы, где $K^-(\pi^+)$ имеют низкий импульс.

Распад $\bar{B}^0 \to \chi_{c1}\pi^+K^-$, в котором $\chi_{c1} \to J/\psi\gamma$ и $J/\psi \to \ell^+\ell^-$, описывается шестью переменными (в предположении, что ширины χ_{c1} и J/ψ пренебрежимо малы). В качестве этих переменных мы выбрали $M(\chi_{c1}\pi^+), M(K^-\pi^+),$ углы спиральности χ_{c1} и J/ψ ($\theta_{\chi_{c1}}$ и $\theta_{J/\psi}$) и углы между плоскостями рождения и распада χ_{c1} и J/ψ ($\phi_{\chi_{c1}}$ и $\phi_{J/\psi}$). Анализ распада $\bar{B}^0 \to \chi_{c1}\pi^+K^$ был выполнен после интегрирования по угловым переменным $\theta_{\chi_{c1}}, \theta_{J/\psi}, \phi_{\chi_{c1}}$ и $\phi_{J/\psi}$. Из моделирования найдено, что эффективность восстановления почти однородна по $\phi_{\chi_{c1}}$ и $\phi_{J/\psi}$, поэтому после интегрирования по этим углам интерференционные члены между состояниями с разной спиральностью χ_{c1} , которые содержат множители $\sin \phi_{\chi_{c1}}, \cos \phi_{\chi_{c1}}, \sin 2\phi_{\chi_{c1}}$ или $\cos 2\phi_{\chi_{c1}}$, становятся пренебрежимо малыми. При получении выражений для амплитуды распада мы предполагали отсутствие интерференции между состояниями с различной спиральностью χ_{c1} , это соответствует тому, что частица χ_{c1} является стабильной.

Был выполнен бинированный фит диаграммы Далица с максимизацией логарифма правдоподобия. Выбранное количество бинов составило 400 × 400. Использовалась фитирующая функция следующего вида:

$$F(s_x, s_y) = S(s_x, s_y) \times \varepsilon(s_x, s_y) + B(s_x, s_y),$$
(25)

где $s_x \equiv M^2(K^-\pi^+), s_y \equiv M^2(\chi_{c1}\pi^+), S$ и B – плотности распределения сигнала и фона, ε – эффективность восстановления. Плотность распределения фона $B(s_x, s_y)$ определялась из контрольной области по ΔE . Нормировка фона была отпущена в пределах соответствующей неопределенности, найденной из фитирования распределения по ΔE . Эффективность в каждом бине $\varepsilon(s_x, s_y)$ была найдена из моделирования. Распределения для контрольной области и для моделирования были сглажены.

Амплитуда трехчастичного распада $\bar{B}^0 \to \chi_{c1}\pi^+K^-$ была представлена как сумма амплитуд Брейта-Вигнера для различных промежуточных квазидвухчастичных состояний. Основная модель включала все известные $K^-\pi^+$ резонансы ниже 1900 MeV/ c^2 : κ , $K^*(892)$, $K^*(1410)$, $K_0^*(1430)$, $K_2^*(1430)$, $K^*(1680)$, $K_3^*(1780)$, а также один экзотический $\chi_{c1}\pi^+$ резонанс. Амплитуда распада $\bar{B}^0 \to \chi_{c1}\pi^+K^-$ через двухчастичный резонанс R (R обозначает $K^-\pi^+$ или $\chi_{c1}\pi^+$ резонанс) и χ_{c1} мезон со спиральностью λ выражалась как:

$$F_B^{(L_B)} \cdot \frac{1}{M_R^2 - s_R - iM_R\Gamma(s_R)} \cdot F_R^{(L_R)} \cdot T_\lambda \cdot \left(\frac{p_B}{m_B}\right)^{L_B} \cdot \left(\frac{p_R}{\sqrt{s_R}}\right)^{L_R}.$$
 (26)

Здесь $F_B^{(L_B)}$ и $F_R^{(L_R)}$ – формфакторы Блата-Вайскопфа распада \bar{B}^0 мезона и R резонанса (верхний индекс означает орбитальный момент распада); M_R – масса резонанса, s_R – квадрат четырехимпульса и $\Gamma(s_R)$ – зависящая от энергии ширина; T_{λ} – зависящая от углов часть амплитуды; $(\frac{p_B}{m_B})^{L_B} \cdot (\frac{p_R}{\sqrt{s_R}})^{L_R}$ – множители, связанные с импульсной зависимостью волновой функции, p_B (p_R) – импульс дочерней частицы \bar{B}^0 мезона (R резонанса) в системе покоя B(R); и m_B – масса \bar{B}^0 мезона. Для K^* резонансов с ненулевым спином орбитальный момент в распаде B мезона L_B может принимать несколько значений. Мы выбрали самое низкое значение L_B в качестве основного и включили другие возможности в систематическую ошибку. Для зависящей

от энергии ширины использовалось выражение:

$$\Gamma(s_R) = \Gamma_0 \cdot (p_R/p_{R0})^{2L_R+1} \cdot (m_R/\sqrt{s_R}) \cdot F_R^2.$$
(27)

Функция T_{λ} была получена с использованием формализма спиральности. В частности, для распада $\bar{B}^0 \to \chi_{c1} K^* (\to K^- \pi^+)$ найдено:

$$T_{\lambda} = d_{\lambda 0}^{J}(\theta_{K^*}), \qquad (28)$$

где J – спин K^* резонанса; θ_{K^*} – угол спиральности в распаде K^* . Мы учитывали, что в распадах $\bar{B}^0 \to \chi_{c1} K^* (\to K^- \pi^+)$ и $\bar{B}^0 \to Z^+ (\to \chi_{c1} \pi^+) K^$ материнские частицы χ_{c1} мезона разные, поэтому соответствующие спиральности определены относительно разных осей. Детекторное разрешение $\sigma \sim 2 \,\mathrm{MeV}/c^2$ пренебрежимо мало по сравнению с шириной любого из рассмотренных резонансов.

Проекции диаграммы Далица с наложенными результатами фитирования показаны на Рис. 13. Вклад Z⁺ лучше всего виден на проекции второй вертикальной части. Найденные из фитирования масса и ширина состояния

Рис. 13: Результат фитирования диаграммы Далица распада $\bar{B}^0 \to \chi_{c1} \pi^+ K^-$ в модели с одним Z^+ -резонансом. Показаны проекции частей, определенных на Рис. 12: (a)-(d) соответствуют вертикальным частям слева направо, (e)-(g) соответствуют горизонтальным частям снизу вверх. Точки с ошибками – данные, сплошная гистограмма – результат фитирования, прерывистая гистограмма – вклад фона, штрих-пунктирная гистограмма на (a)-(d) – сумма всех компонент фита, кроме Z^+ .

 Z^+ равны: $M = (4150^{+31}_{-16}) \,\mathrm{MeV}/c^2$ и $\Gamma = (352^{+99}_{-43}) \,\mathrm{MeV}$; доля в фите, определенная как интеграл вклада Z^+ по всей диаграмме Далица, деленный на интеграл сигнальной функции: $\frac{\int |A_z|^2 ds_x ds_y}{\int S \, ds_x ds_y}$, равна $f = (33.1^{+8.7}_{-5.8})\%$. Для определения статистической ошибки в f мы разыгрывали псевдоэкс-

Для определения статистической ошибки в f мы разыгрывали псевдоэксперименты с таким же количеством событий, как в данных, и с плотностью вероятности, соответствующей результату фитирования данных. Псевдоэксперименты фитировались, и для каждого находилось значение f. Среднеквадратичное отклонение f от значения в данных рассматривалось как соответствующая статистическая ошибка.

Значимость Z^+ находилась по разности двойных логарифмов правдоподобия $2 \log \mathcal{L}$ нулевой гипотезы и гипотезы с Z^+ с учетом отличия в количестве степеней свободы. Значимость составила 10.7σ . Доли в фите и значимости для всех резонансов показаны в Таблице 3.

	Один Z^+		Два Z^+	
Вклад	Доля в фите	Значимость	Доля в фите	Значимость
$Z^{+}_{(1)}$	$(33.1^{+8.7}_{-5.8})\%$	10.7σ	$(8.0^{+3.8}_{-2.2})\%$	5.7σ
Z_2^+	—	_	$(10.4^{+6.1}_{-2.3})\%$	5.7σ
κ	$(1.9 \pm 1.8)\%$	2.1σ	$(3.6 \pm 2.6)\%$	3.5σ
$K^{*}(892)$	$(28.5 \pm 2.1)\%$	10.6σ	$(30.1 \pm 2.3)\%$	9.8σ
$K^{*}(1410)$	$(3.6 \pm 4.4)\%$	1.3σ	$(4.4 \pm 4.3)\%$	2.0σ
$K_0^*(1430)$	$(22.4 \pm 5.8)\%$	3.4σ	$(18.6 \pm 5.0)\%$	4.5σ
$K_2^*(1430)$	$(8.4 \pm 2.7)\%$	5.2σ	$(6.1 \pm 2.9)\%$	5.4σ
$K^{*}(1680)$	$(5.2 \pm 3.7)\%$	2.2σ	$(4.4 \pm 3.1)\%$	2.4σ
$K_3^*(1780)$	$(7.4 \pm 3.0)\%$	3.6σ	$(7.2 \pm 2.9)\%$	3.8σ

Таблица 3: Результаты фитирования диаграммы Далица распада $\bar{B}^0 \to \chi_{c1} \pi^+ K^-$.

Для изучения модельной неопределенности мы поочередно исключали из модели каждый резонанс со значимостью меньше 5 σ , добавляли нерезонансный вклад, отпускали ограничения на параметры состояния κ , использовали параметризацию эксперимента LASS для *S*-волновой амплитуды системы $K\pi$ [51], добавляли новый $K\pi$ -резонанс с J = 1 или 2 и свободными параметрами. Минимальная значимость Z^+ составила 6.2 σ .

В описанных фитах предполагалось, что спин состояния Z^+ равен единице. Гипотеза J = 1 не дает заметного улучшения в описании данных. Следовательно, двумерный фит имеет низкую чувствительность к квантовым числам состояния Z^+ .

Для оценки уровня достоверности фита мы объединяли бины до тех пор, пока ожидаемое количество событий в бине не достигало шестнадцати. Уровень достоверности фита в модели с одним Z^+ составил 0.5%, что указывает на не очень хорошее описание данных. Действительно, на проекциях диаграммы Далица видно, что структура в канале $M(\chi_{c1}\pi^+)$ имеет двухпиковую форму. Соответственно, в модель был добавлен второй Z^+ -резонанс, соответствующие результаты фитирования показаны на Рис. 14. Уровень до-

Рис. 14: Результат фитирования диаграммы Далица распада $\bar{B}^0 \to \chi_{c1} \pi^+ K^-$ в модели с двумя Z^+ -резонансами. Легенда такая же, как у Рис. 13.

стоверности для модели с двумя Z^+ составил 42%. Сравнение логарифмов правдоподобия для гипотез с одним и с двумя Z^+ показывает, что последняя предпочтительнее на уровне 5.7 σ . Метод оценки значимости был проверен с использованием техники псевдоэкспериментов.

Найденные из фита значения масс и ширин Z^+ резонансов составили:

$$M_{1} = (4051 \pm 14^{+20}_{-41}) \,\mathrm{MeV}/c^{2}, \qquad M_{2} = (4248^{+44+180}_{-29-35}) \,\mathrm{MeV}/c^{2}, \Gamma_{1} = (82^{+21+47}_{-17-22}) \,\mathrm{MeV}, \qquad \Gamma_{2} = (177^{+54+316}_{-39-61}) \,\mathrm{MeV}, \tag{29}$$

их доли в фите равны: $f_1 = (8.0^{+3.8+9.5}_{-2.2-4.2})\%$ и $f_2 = (10.4^{+6.1+51.5}_{-2.3-0.7})\%$. По формуле

 $\mathcal{B}(\bar{B}^0 \to \chi_{c1} \pi^+ K^-) \times f_{1,2}$ были найдены произведения вероятностей:

$$\mathcal{B}(\bar{B}^0 \to Z_1^+ K^-) \times \mathcal{B}(Z_1^+ \to \chi_{c1} \pi^+) = (3.0^{+1.5+3.7}_{-0.8-1.6}) \times 10^{-5}, \tag{30}$$

$$\mathcal{B}(\bar{B}^0 \to Z_2^+ K^-) \times \mathcal{B}(Z_2^+ \to \chi_{c1} \pi^+) = (4.0^{+2.3+19.7}_{-0.9-0.5}) \times 10^{-5}.$$
 (31)

Эти произведения близки к соответствующему значению для $Z(4430)^+$ в его лидирующей моде распада на $\psi(2S)\pi$ [8, 50]. Новые состояния были названы $Z(4050)^+$ и $Z(4250)^+$.

Систематическая ошибка включает модельную неопределенность, неопределенность в J_Z и варьирование критериев отбора. Для всех моделей значимость двух резонансов по сравнению с одним превышает 5.0 σ , по сравнению с нулевой гипотезой – 8.1 σ .

Из доли в фите для K^* была найдена вероятность распада:

$$\mathcal{B}(\bar{B}^0 \to \chi_{c1} K^*(892)^0) = (1.73^{+0.15+0.34}_{-0.12-0.22}) \times 10^{-4}.$$
(32)

Это измерение стало первым на момент публикации, в котором учитывалась интерференция. Доля $K^*(892)^0$ мезонов с продольной поляризацией (т.е. со спиральностью ноль) составила $f_L = (94.7^{+3.8+4.6}_{-4.8-9.9})\%$, что согласуется с ожиданиями [52].

Распределения по углам спиральности состояний χ_{c1} и J/ψ можно предсказать, используя результаты фитирования диаграммы Далица. Мы сравнивали данные с предсказаниями для различных частей диаграммы и везде нашли хорошее согласие.

Минимальный кварковый состав состояний $Z(4050)^+$ и $Z(4250)^+$ – четырехкварковая комбинация $|c\bar{c}u\bar{d}\rangle$. На момент публикации этой работы было известно только одно аналогичное состояние – резонанс $Z(4430)^+$ в канале $\psi(2S)\pi^+$ [8], причем его экспериментальный статус был противоречивым [58]. Обнаружение $Z(4050)^+$ и $Z(4250)^+$ подтвердило принципиальную возможность существования экзотических состояний этого типа.

Резонансы, распадающиеся на $\chi_{cJ}\pi$, были предсказаны в модели адрочармония [53], являющегося связанным состоянием бесцветных кваркония и легкого мезона. Доминирование распада на соответствующий кварконий и легкие мезоны является отличительной особенностью адрочармония. Альтернативные интерпретации включают связанные дикварк-антидикварк и молекулярные состояния [54].

Эксперимент BaBar не подтвердил состояния $Z(4050)^+$ и $Z(4250)^+$ [55]. Однако противоречия между Belle и BaBar нет, поскольку верхние пределы на соответствующие вероятности распадов у ВаВаг выше, чем центральные значения Belle. Ровно такая же ситуация была с резонансом $Z(4430)^+$, который впоследствии был подтвержден на большой статистике в эксперименте LHCb, как описано в следующей главе. В эксперименте BaBar использовался упрощенный подход, основанный на моментах полиномов Лежандра, имеющий, по-видимому, меньшую чувствительность, чем Далиц-анализ. Дальнейшее изучение $Z(4050)^+$ и $Z(4250)^+$ связано с многомерным амплитудным анализом, который может быть выполнен в экспериментах Belle и LHCb, или на большей статистике в будущем эксперименте Belle-II.

В Главе 8 представлен амплитудный анализ диаграммы Далица распада $B \to \psi(2S)\pi^+K$, в результате которого было подтверждено заряженное чармониеподобное состояние $Z(4430)^+$.

В 2007 году в эксперименте Belle при изучении распадов $B \to \psi(2S)\pi^+ K$ был обнаружен пик в массовом спектре $\psi(2S)\pi^+$ пар при $M(\psi(2S)\pi^+) \simeq$ 4430 MeV/ c^2 . В работе использовалось фитирование одномерного распределения по массе $\psi(2S)\pi^+$ с вето на $K^*(892)$ и $K^*(1430)$. В последствии эксперимент BaBar также выполнил одномерный фит, однако с усложненным методом оценки формы фона [58]. В работе BaBar утверждалось, что спектр масс $\psi(2S)\pi^+$ хорошо описывается интерференцией K^* резонансов без необходимости введения $Z(4430)^+$. Для более точного учета интерференции мы выполнили амплитудный анализ диаграммы Далица распада $B \to \psi(2S)\pi^+K$. Использовались те же данные, что и в работе по изучению распада $\bar{B}^0 \to \chi_{c1}\pi^+K^-$ [9]. Представленные здесь результаты опубликованы в работе [10].

Отбирались распады $\bar{B}^0 \to \psi(2S)\pi^+K^-$ и $B^+ \to \psi(2S)\pi^+K^0_S$, где $\psi(2S)$ восстанавливался в каналах $\ell^+\ell^-$ и $J/\psi\pi^+\pi^-$ с $J/\psi \to \ell^+\ell^-$ ($\ell = e$ или μ). Использовались такие же критерии отбора, как в работе [8]. Диаграммы Далица распадов $\bar{B}^0 \to \psi(2S)\pi^+K^-$ и $B^+ \to \psi(2S)\pi^+K^0_S$ складывались. Суммарная диаграмма Далица для сигнальной области по ΔE показана на Рис. 15. Вертикальные полосы здесь соответствуют сигналам $K^*(892)$ и $K^*(1430)$, горизонтальная полоса вблизи $M^2(\psi(2S)\pi^+) \sim 20 \,\text{GeV}^2/c^4$ соответствует сигналу $Z(4430)^+$, обнаруженному в работе [8].

В Далиц-анализе использовался такой же подход, как при анализе распадов $\bar{B}^0 \to \chi_{c1} \pi^+ K^-$ [9]. Мы интегрировали по угловым переменным, характеризующим распад $\psi(2S)$, и рассматривали частицу $\psi(2S)$ как стабильную. Амплитуда трехчастичного распада $B \to \psi(2S)\pi^+ K$ была представлена как сумма вкладов различных квази-двухчастичных состоянияй; ос-

Рис. 15: Диаграмма далица распадов $B \to \psi(2S)\pi^+K$ для сигнальной области по ΔE . Сплошные (прерывистые) линии показывают границы пяти вертикальных (трех горизонтальных) частей, которые использовались для представления результатов фитирования. Координаты вертикальных линий следующие: $M^2(K\pi^+) = (0.796)^2 \,\text{GeV}^2/c^4$, $(0.996)^2 \,\text{GeV}^2/c^4$, $(1.332)^2 \,\text{GeV}^2/c^4$ и $(1.532)^2 \,\text{GeV}^2/c^4$; горизонтальных линий – $M^2(\psi(2S)\pi^+) = 19.0 \,\text{GeV}^2/c^4$ и $20.5 \,\text{GeV}^2/c^4$.

новная модель включала все известные низколежащие $K\pi^+$ резонансы [κ , $K^*(892)$, $K^*(1410)$, $K_0^*(1430)$, $K_2^*(1430)$ и $K^*(1680)$], а также один экзотический $\psi(2S)\pi^+$ резонанс. Кроме сигнальной компоненты, фитирующая функция содержит фоновое слагаемое, найденное из контрольной области по ΔE , а также поправку на эффективность восстановления, найденную из моделирования.

Проекции частей диаграммы Далица с наложенными результатами фитирования показаны на Рис. 16. Сигнал $Z(4430)^+$ четче всего виден на проекции третьей вертикальной части. Параметры $\psi(2S)\pi^+$ резонанса, найденные из фита, составляют:

$$M = (4443^{+15+19}_{-12-13}) \,\mathrm{MeV}/c^2, \tag{33}$$

$$\Gamma = (107^{+86+74}_{-43-56}) \text{ MeV}, \tag{34}$$

$$f = (5.7^{+3.1+9.4}_{-1.6-2.7})\%.$$
(35)

Центральные значения согласуются с параметрами, полученными в предыдущем анализе Belle с использованием фитирования одномерного распределения [8], однако ошибки возросли. Статистическая значимость, оцененная

Рис. 16: Проекции частей диаграммы Далица, показанных на Рис. 15: (a)-(e) соответствует вертикальным частям слева направо, (f)-(h) соответствует горизонтальным частям снизу вверх. Точки с ошибками – данные, сплошные [пунктирные] гистограммы – результаты фитирования моделью с $Z(4430)^+$ [без $Z(4430)^+$], прерывистая гистограмма – фон.

по изменению $2 \log \mathcal{L}$ при включении $Z(4430)^+$ в фит (с учетом изменения в количестве степеней свободы), составила 6.4σ . Доли в фите и значимости для всех компонент представлены в Таблице 4. Уровень достоверности фита с $Z(4430)^+$ (без $Z(4430)^+$) составил 36% (0.1%).

При изучении систематической ошибки мы рассматривали вклад модельной неопределенности, предположение об орбитальном моменте в распадах B мезона; наряду с гипотезой о спине $J_Z = 0$ рассматривали гипотезу $J_Z = 1$; варьировали процедуру сглаживания диаграмм Далица для контрольной области и моделирования, в частности, в контрольной области учитывали вклад $K^*(892)$. Минимальная значимость $Z(4430)^+$ составила 5.4 σ .

Распределение по углу спиральности $\psi(2S)$ можно предсказать из результатов Далиц-анализа. Мы нашли хорошее согласие с данными для разных частей диаграммы Далица.

Вклад	Доля в фите (%)	Значимость (σ)
$Z(4430)^{+}$	$5.7^{+3.1}_{-1.6}$	6.4
κ	$4.1^{+3.4}_{-1.1}$	1.5
$K^{*}(892)$	$64.8^{+3.8}_{-3.5}$	> 20
$K^{*}(1410)$	$5.5^{+8.8}_{-1.5}$	0.5
$K_0^*(1430)$	5.3 ± 2.6	1.3
$K_2^*(1430)$	$5.5^{+1.6}_{-1.4}$	3.1
$K^{*}(1680)$	$2.8^{+5.8}_{-1.0}$	1.2

Таблица 4: Результаты фитирования диаграммы Далица распада $B \to \psi(2S) \pi^+ K$.

Для определения эффективности восстановления использовалось моделирование с равномерным распределением событий по фазовому объему, взвешенное согласно результатам Далиц-анализа. Эффективности составили $(19.2 \pm 1.4)\%$ и $(8.2 \pm 0.7)\%$ для каналов $\psi(2S) \rightarrow \ell^+\ell^-$ и $\psi(2S) \rightarrow J/\psi\pi^+\pi^-$ соответственно. Основной вклад в ошибку дает возможное различие между данными и моделированием. Для вероятности распада получено:

$$\mathcal{B}(\bar{B}^0 \to \psi(2S)\pi^+K^-) = (5.68 \pm 0.13 \pm 0.42) \times 10^{-4}.$$
 (36)

С использованием доли $Z(4430)^+$ в фите найдено:

$$\mathcal{B}(\bar{B}^0 \to K^- Z(4430)^+) \times \mathcal{B}(Z(4430)^+ \to \psi(2S)\pi^+) = (3.2^{+1.8+5.3}_{-0.9-1.6}) \times 10^{-5}.$$
 (37)

Это значение согласуется с предыдущим результатом Belle [8] и не противоречит верхнему пределу BaBar, равному 3.1×10^{-5} [58]. Была измерена также вероятность распада

$$\mathcal{B}(B^0 \to \psi(2S)K^*(892)^0) = (5.52^{+0.35+0.53}_{-0.32-0.58}) \times 10^{-4}.$$
 (38)

Значение несколько ниже мирового среднего 2008 года: $(7.2 \pm 0.8) \times 10^{-4}$ [56] и хорошо согласуется с современным средним: $(6.0 \pm 0.4) \times 10^{-4}$ [28]. Степень поляризации $K^*(892)^0$ мезонов составила $f_L = (44.8^{+4.0+4.0}_{-2.7-5.3})\%$, что согласуется с измерением CLEO II: $(45 \pm 12)\%$ [57] и имеет гораздо более высокую точность.

Эксперимент Belle продолжил изучение распада $\bar{B}^0 \to \psi(2S)\pi^+K^-$ с ипользованием полного амплитудного анализа [21], т.е. без интегрирования

по угловым переменным. (Эта работа не вошла в диссертацию.) Состояние $\psi(2S)$ восстанавливалось в канале $\ell^+\ell^-$, полное описание распада содержит четыре переменные. Этот подход позволил измерить спин и четность $Z(4430)^+$, которые составили $J^P = 1^+$. Эксперимент LHCb впоследствии повторил полный амплитудный анализ на большей статистике и подтвердил все выводы, сделанные Belle [22]. Дополнительно, LHCb измерил диаграмму Аргана для $Z(4430)^+$ и наглядно продемонстрировал резонансный характер этого состояния.

Основными кандидатами для интерпретации $Z(4430)^+$ являются пороговые эффекты [59], эффекты перерассеяния [60], адрочармоний [53], связанные состояния дикварка-антидикварка и молекулярные состояния [54]. Дискриминировать различные модели пока не удается.

Глава 9 содержит обсуждение полученных результатов.

При обсуждении слабовозбужденных состояний кваркония в Главе 1 мы отметили, что их свойства (массы, аннигиляционные ширины, ширины радиационных и адронных переходов) согласуются с предсказаниями кварковой модели, эффективных теорий и решеточных вычислений. В работах, представленных в диссертации, мы обнаружили три новых спин-синглетных состояния: $\eta_b(2S)$, $h_b(1P)$ и $h_b(2P)$, а также существенно уточнили массу и впервые измерили ширину состояния $\eta_b(1S)$. Поскольку $\eta_b(1S)$ являлось единственным известным ранее спин-синглетным состоянием боттомония, очевидно, что количество экспериментальной информации для таких состояний возросло очень значительно. При этом никаких неожиданностей не произошло: все результаты по сверхтонким расщеплениям, полным ширинам и вероятностям радиационных переходов хорошо согласуются с теоретическими вычислениями. (Заметим, что кандидат в $\eta_b(2S)$ с аномальными свойствами, найденный группой К. Сета при анализе данных эксперимента CLEOc, был "закрыт" в одной из работ диссертации.) Этот вывод тем более замечателен, что в области порогов и выше мы сталкиваемся с явлениями. противоречащими ожиданиям (наивной) кварковой модели.

В области порогов открытого аромата мы столкнулись с принципиально новым типом адронов – молекулами из тяжелых D и B мезонов. (Возможно, ближайший известный аналог здесь – это дейтрон.) С 2003 года было известно одно такое состояние – X(3872), расположенное вблизи порога $D^0 \bar{D}^{*0}$. Изоспин этого состояния равен нулю, и оно смешивается с "обычным" состоянием чармония $\chi_{c1}(2P)$. О наличии (и доминировании) молекулярной примеси мы делали вывод на основании близости массы к порогу и сильному нарушению изоспина в распадах. В работе из этой диссертации мы обнаружили два заряженные состояния, $Z_b(10610)$ и $Z_b(10650)$, расположенные вблизи порогов $B\bar{B}^*$ и $B^*\bar{B}^*$ соответственно. Изоспин этих состояний равен единице, и молекула – лидирующая компонента в их фоковском разложении. Анализ волновой функции молекулярного состояния позволил объяснить на основании спиновой симметрии тяжелых кварков всю имеющуюся экспериментальную информацию по Z_b . Построение динамической модели для Z_b является объектом дальнейших исследований.

Обнаружение заряженных состояний Z_b мотивировало поиск аналогичных состояний в области чарма. Действительно, в экспериментах BESIII, Belle и CLEOc были обнаружены заряженные состояния Z_c вблизи порогов рождения $D\bar{D}^*$ и $D^*\bar{D}^*$. Экспериментальная информация по состояниям Z_c еще не полная, поэтому их интерпретация остается открытым вопросом. Состояния Z_c и Z_b предоставляют богатый материал для построения феноменологических моделей. Продолжающиеся исследования, можно надеяться, приведут к лучшему пониманию околопороговых состояний.

В области выше порогов в работах, вошедших в диссертацию, обнаружены заряженные состояния $Z(4050)^+$ и $Z(4250)^+$, распадающиеся на $\chi_{c1}\pi^{\pm}$, и подтверждено в Далиц-анализе состояние $Z(4430)^+$, распадающееся на $\psi(2S)\pi^+$. Состояние $Z(4430)^+$ является первым обнаруженным заряженным чармониеподобным состоянием. На сегодняшний день оно надежно подтверждено в эксперименте LHCb. Основными кандидатами для интерпретации $Z(4050)^+$, $Z(4250)^+$ и $Z(4430)^+$ являются перерассеяние, пороговые эффекты, связанные состояния дикварка-антидикварка, адрочармоний и молекулярные состояния. К сожалению, дискриминировать различные модели пока не удается. Обнаружение новых каналов распада и измерение квантовых чисел (в случае $\chi_{c1}\pi^+$ состояний) могут способствовать выяснению их структуры.

В Заключении еще раз кратко сформулированы основные результаты диссертации:

1. Впервые обнаружены *P*-волновые состояния боттомония $h_b(1P)$ и $h_b(2P)$. Измерены их массы $m_{h_b(1P)} = (9899.1 \pm 0.4 \pm 1.0) \text{ MeV}/c^2$, $m_{h_b(2P)} = (10259.8 \pm 0.5 \pm 1.1) \text{ MeV}/c^2$ и относительные вероятности

рождения в пике резонанса $\Upsilon(5S)$:

$$\frac{\sigma[e^+e^- \to h_b(1P)\pi^+\pi^-]}{\sigma[e^+e^- \to \Upsilon(2S)\pi^+\pi^-]} = 0.45 \pm 0.08^{+0.07}_{-0.12},$$
$$\frac{\sigma[e^+e^- \to \Lambda_b(2P)\pi^+\pi^-]}{\sigma[e^+e^- \to \Upsilon(2S)\pi^+\pi^-]} = 0.77 \pm 0.08^{+0.22}_{-0.17}.$$

Измерено сверхтонкое расщепление в 1*P*- и 2*P*-мультиплетах боттомония:

$$\Delta M_{\rm HF}(1P) = (+0.8 \pm 1.1) \,\,{\rm MeV}/c^2,$$
$$\Delta M_{\rm HF}(2P) = (+0.5 \pm 1.2) \,\,{\rm MeV}/c^2.$$

2. Впервые найдено спин-синглетное состояние боттомония $\eta_b(2S)$ и обнаружены радиационные переходы $h_b(1P) \to \eta_b(1S)\gamma$, $h_b(2P) \to \eta_b(1S)\gamma$ и $h_b(2P) \to \eta_b(2S)\gamma$. Получено самое точное на момент публикации значение массы состояния $\eta_b(1S)$, впервые измерена его ширина, измерена масса $\eta_b(2S)$. Значения составили:

$$m_{\eta_b(1S)} = (9402.4 \pm 1.5 \pm 1.8) \text{ MeV}/c^2,$$

$$\Gamma_{\eta_b(1S)} = (10.8^{+4.0}_{-3.7} + 2.0) \text{ MeV},$$

$$m_{\eta_b(2S)} = (9999.0 \pm 3.5^{+2.8}_{-1.9}) \text{ MeV}/c^2.$$

Измерено сверхтонкое расщепление в 1*S*- и 2*S*-мультиплетах боттомония:

$$\Delta M_{\rm HF}(1S) = (57.9 \pm 2.3) \,\,{\rm MeV}/c^2$$
$$\Delta M_{\rm HF}(2S) = (24.3^{+4.0}_{-4.5}) \,\,{\rm MeV}/c^2,$$

и отношение расщеплений: 0.420^{+0.071}_{-0.079}. Измерены вероятности радиационных переходов:

$$\mathcal{B}[h_b(1P) \to \eta_b(1S)\gamma] = (49.2 \pm 5.7 ^{+5.6}_{-3.3})\%,$$

$$\mathcal{B}[h_b(2P) \to \eta_b(1S)\gamma] = (22.3 \pm 3.8 ^{+3.1}_{-3.3})\%,$$

$$\mathcal{B}[h_b(2P) \to \eta_b(2S)\gamma] = (47.5 \pm 10.5 ^{+6.8}_{-7.7})\%.$$

3. Выполнен поиск состояний боттомония в эксклюзивно восстановленных радиационных распадах $\Upsilon(2S)$ резонанса. Показана ложность сигнала распада $\Upsilon(2S) \to \eta_b(2S)\gamma$, полученного группой К. Сета. 4. Впервые обнаружены заряженные боттомониеподобные состояния $Z_b(10610)$ и $Z_b(10650)$. Измерены их массы, ширины, относительные амплитуды и фазы в каналах $h_b(1P)\pi^+\pi^-$ и $h_b(2P)\pi^+\pi^-$.

Конечное состояние	$h_b(1P)\pi^+\pi^-$	$h_b(2P)\pi^+\pi^-$
$\overline{M_{Z_b(10610)}}, \ { m MeV}/c^2$	$10605\pm2^{+3}_{-1}$	10599^{+6+5}_{-3-4}
$\Gamma_{Z_b(10610)}, \text{ MeV}$	$11.4^{+4.5+2.1}_{-3.9-1.2}$	13^{+10+9}_{-8-7}
$M_{Z_b(10650)}, \text{ MeV}/c^2$	$10654 \pm 3{}^{+1}_{-2}$	10651^{+2+3}_{-3-2}
$\Gamma_{Z_b(10650)}, \text{ MeV}$	$20.9^{+5.4+2.1}_{-4.7-5.7}$	$19\pm7{}^{+11}_{-7}$
Относительная нормировка	$1.39 \pm 0.37^{+0.05}_{-0.15}$	$1.6\substack{+0.6+0.4\\-0.4-0.6}$
Относительная фаза, градусы	187^{+44+3}_{-57-12}	$181_{-105-109}^{+65+74}$

Продемонстрировано отсутствие нерезонансного вклада в распадах $\Upsilon(5S) \rightarrow h_b(nP) \pi^+ \pi^-.$

- 5. В предположении, что состояния $Z_b(10610)$ и $Z_b(10650)$ имеют молекулярную структуру $B\bar{B}^*$ и $B^*\bar{B}^*$ соответственно, объяснены все их основные свойства, а также продемонстрирован механизм нарушения спиновой симметрии тяжелых кварков в распадах $\Upsilon(5S) \rightarrow h_b(nP)\pi^+\pi^-$.
- 6. Выполнен Далиц-анализ распада B⁰ → χ_{c1}π⁺K⁻. Обнаружены заряженные чармониеподобные состояния Z(4050)⁺ и Z(4250)⁺, измерены их массы, ширины и произведения вероятностей распадов:
 - $$\begin{split} M_{Z(4050)} &= (4051 \pm 14^{+20}_{-41}) \,\mathrm{MeV}/c^2, \qquad M_{Z(4250)} = (4248^{+44+180}_{-29-35}) \,\mathrm{MeV}/c^2, \\ \Gamma_{Z(4050)} &= (82^{+21+47}_{-17-22}) \,\mathrm{MeV}, \qquad \Gamma_{Z(4250)} = (177^{+54+316}_{-39-61}) \,\mathrm{MeV}, \\ \mathcal{B}(\bar{B}^0 \to K^- Z(4050)^+) \times \mathcal{B}(Z(4050)^+ \to \chi_{c1}\pi^+) = (3.0^{+1.5+3.7}_{-0.8-1.6}) \times 10^{-5}, \\ \mathcal{B}(\bar{B}^0 \to K^- Z(4250)^+) \times \mathcal{B}(Z(4250)^+ \to \chi_{c1}\pi^+) = (4.0^{+2.3+19.7}_{-0.9-0.5}) \times 10^{-5}. \end{split}$$
- 7. Выполнен Далиц-анализ распада $B \to \psi(2S)\pi^+K$. Подтверждено заряженное состояние $Z(4430)^+$, в частности, показано, что соответствующая структура не являются результатом интерференции $K\pi$ резонансов. Впервые измерена масса, ширина и произведение вероятностей распада для состояния $Z(4430)^+$ в амплитудном анализе:

$$M = (4443^{+15+19}_{-12-13}) \text{ MeV}/c^2,$$

$$\Gamma = (107^{+86+74}_{-43-56}) \text{ MeV},$$

$$\mathcal{B}(\bar{B}^0 \to K^- Z(4430)^+) \times \mathcal{B}(Z(4430)^+ \to \psi(2S)\pi^+) = (3.2^{+1.8+5.3}_{-0.9-1.6}) \times 10^{-5}.$$

Публикации автора по теме диссертации

- [1] I. Adachi,.. R. Mizuk *et al.* [Belle Collaboration], "First observation of the P-wave spin-singlet bottomonium states $h_b(1P)$ and $h_b(2P)$," Phys. Rev. Lett. **108**, 032001 (2012).
- [2] R. Mizuk *et al.* [Belle Collaboration], "Evidence for the $\eta_b(2S)$ and observation of $h_b(1P) \rightarrow \eta_b(1S)\gamma$ and $h_b(2P) \rightarrow \eta_b(1S)\gamma$," Phys. Rev. Lett. **109**, 232002 (2012).
- [3] S. Sandilya,.. R. Mizuk et al. [Belle Collaboration], "Search for bottomonium states in exclusive radiative Υ(2S) decays," Phys. Rev. Lett. 111, no. 11, 112001 (2013).
- [4] A. Bondar, A. Garmash, R. Mizuk et al. [Belle Collaboration], "Observation of two charged bottomonium-like resonances in Υ(5S) decays," Phys. Rev. Lett. 108, 122001 (2012).
- [5] A. E. Bondar, A. Garmash, A. I. Milstein, R. Mizuk and M. B. Voloshin, "Heavy quark spin structure in Z_b resonances," Phys. Rev. D 84, 054010 (2011).
- [6] P. Krokovny,.. R. Mizuk et al. [Belle Collaboration], "First observation of the Z_b(10610)⁰ in a Dalitz analysis of Υ(10860) → Υ(nS)π⁰π⁰," Phys. Rev. D 88, no. 5, 052016 (2013).
- [7] Z. Q. Liu,.. R. Mizuk *et al.* [Belle Collaboration], "Study of $e^+e^- \rightarrow \pi^+\pi^- J/\psi$ and observation of a charged charmoniumlike state at Belle," Phys. Rev. Lett. **110**, 252002 (2013).
- [8] S. K. Choi,.. R. Mizuk *et al.* [Belle Collaboration], "Observation of a resonance-like structure in the $\pi^{\pm}\psi'$ mass distribution in exclusive $B \to K\pi^{\pm}\psi'$ decays," Phys. Rev. Lett. **100** (2008) 142001.
- [9] R. Mizuk et al. [Belle Collaboration], "Observation of two resonance-like structures in the $\pi^+\chi_{c1}$ mass distribution in exclusive $\bar{B}^0 \to K^-\pi^+\chi_{c1}$ decays," Phys. Rev. D **78**, 072004 (2008).
- [10] R. Mizuk *et al.* [Belle Collaboration], "Dalitz analysis of $B \to K\pi^+\psi'$ decays and the $Z(4430)^+$," Phys. Rev. D 80, 031104 (2009).

- [11] Р. В. Мизюк, Г. В. Пахлова, П. Н. Пахлов, Р. Н. Чистов, "Физика чармония в эксперименте Belle," Яд. Физ. 73, 669 (2010).
- [12] Р. В. Мизюк, "Спин-синглетные состояния боттомония и адронные переходы из Y(5S)-резонанса в эксперименте Belle," Яд. Физ. 76, Дополнительный номер (2013).
- [13] N. Brambilla,.. R. Mizuk et al., "QCD and strongly coupled gauge theories: challenges and perspectives," Eur. Phys. J. C 74, no. 10, 2981 (2014).
- [14] A. Garmash,.. R. Mizuk *et al.* [Belle Collaboration], "Amplitude analysis of $e^+e^- \rightarrow \Upsilon(nS)\pi^+\pi^-$ at $\sqrt{s} = 10.865 \ GeV$," arXiv:1403.0992 [hep-ex].
- [15] I. Adachi,.. R. Mizuk et al. [Belle Collaboration], "Observation of two charged bottomonium-like resonances," arXiv:1105.4583.
- [16] I. Adachi,.. R. Mizuk *et al.* [Belle Collaboration], "Study of three-body $\Upsilon(10860)$ decays," arXiv:1209.6450 [hep-ex].
- [17] A. Bondar and R. Mizuk, "Status and new results on the Z_b resonances," PoS ConfinementX, 156 (2012) [arXiv:1303.0101 [hep-ex]].
- [18] R. Mizuk, "Recent Belle results in quarkonium physics," PoS ConfinementX, 154 (2012) [arXiv:1303.0096 [hep-ex]].
- [19] R. Mizuk, "Spectroscopy update," PoS ICHEP2012, 017 (2013).

Список литературы

- [20] U. Tamponi, talk given at XXII International Workshop on Deep-Inelastic Scattering (DIS 2014), 28 April - 2 May, 2014, Warsaw, Poland.
- [21] K. Chilikin *et al.* [Belle Collaboration], Phys. Rev. D 88, 074026 (2013).
- [22] R. Aaij *et al.* [LHCb Collaboration], Phys. Rev. Lett. **112**, 222002 (2014).
- [23] T. K. Pedlar *et al.* [CLEO Collaboration], Phys. Rev. Lett. **107**, 041803 (2011).
- [24] B. Aubert *et al.* [BaBar Collaboration], Phys. Rev. Lett. **95**, 142001 (2005).

- [25] K. F. Chen *et al.* [Belle Collaboration], Phys. Rev. Lett. **100**, 112001 (2008).
- [26] G.C. Fox and S. Wolfram, Phys. Rev. Lett. 41, 1581 (1978).
- [27] P. Krokovny, talk given at Les Rencontres de Physique de la Valle'e d'Aoste (La Thuile 2012) 26 February - 3 March, 2012, La Thuile, Italy.
- [28] J. Beringer *et al.* [Particle Data Group Collaboration], Phys. Rev. D 86, 010001 (2012).
- [29] S. Titard and F. J. Yndurain, Phys. Lett. B **351**, 541 (1995).
- [30] N. Brambilla and A. Vairo, Phys. Rev. D **71**, 034020 (2005).
- [31] A. Vairo, Int. J. Mod. Phys. A 22, 5481 (2007) [Conf. Proc. C 060726, 71 (2006)].
- [32] Y. Koma and M. Koma, Nucl. Phys. B **769**, 79 (2007).
- [33] B. Aubert *et al.* [BaBar Collaboration], Phys. Rev. Lett. **101**, 071801 (2008)
 [Erratum-ibid. **102**, 029901 (2009)].
- [34] S. Godfrey and J. L. Rosner, Phys. Rev. D 66, 014012 (2002).
- [35] T. J. Burns, Phys. Rev. D 87, no. 3, 034022 (2013).
- [36] R. J. Dowdall, C. T. H. Davies, T. Hammant and R. R. Horgan, Phys. Rev. D 89, no. 3, 031502 (2014).
- [37] W. Kwong, P. B. Mackenzie, R. Rosenfeld and J. L. Rosner, Phys. Rev. D 37, 3210 (1988).
- [38] C. S. Kim, T. Lee and G. L. Wang, Phys. Lett. B 606, 323 (2005).
- [39] J. P. Lansberg and T. N. Pham, Phys. Rev. D 75, 017501 (2007).
- [40] S. Dobbs, Z. Metreveli, K. K. Seth, A. Tomaradze and T. Xiao, Phys. Rev. Lett. 109, 082001 (2012).
- [41] J. Blatt and V. Weisskopf, Theoretical Nuclear Physics, p.361, New York: John Wiley & Sons (1952).
- [42] M. B. Voloshin, Prog. Part. Nucl. Phys. **61**, 455 (2008).

- [43] A.Garmash et al. [Belle Collaboration], Phys. Rev. Lett. 96, 251803 (2006).
- [44] M. B. Voloshin and L. B. Okun, JETP Lett. 23, 333 (1976) [Pisma Zh. Eksp. Teor. Fiz. 23, 369 (1976)].
- [45] A. Ali, C. Hambrock and W. Wang, Phys. Rev. D 85, 054011 (2012).
- [46] D. Y. Chen and X. Liu, Phys. Rev. D 84, 094003 (2011).
- [47] D. Y. Chen, X. Liu and T. Matsuki, Chin. Phys. C 38, 053102 (2014).
- [48] I. V. Danilkin, V. D. Orlovsky and Y. A. Simonov, Phys. Rev. D 85, 034012 (2012).
- [49] S. Ohkoda, Y. Yamaguchi, S. Yasui, K. Sudoh and A. Hosaka, Phys. Rev. D 86, 014004 (2012).
- [50] W.-M. Yao *et al.* (Particle Data Group), J. Phys. G **33**, 1 (2006).
- [51] D. Aston *et al.* [LASS Collaboration], Nucl. Phys. B **296**, 493 (1988).
- [52] N. Soni *et al.* [Belle Collaboration], Phys. Lett. B **634**, 155 (2006).
- [53] S. Dubynskiy and M. B. Voloshin, Phys. Lett. B 666, 344 (2008).
- [54] N. Brambilla *et al.*, Eur. Phys. J. C **71**, 1534 (2011).
- [55] J. P. Lees *et al.* [BaBar Collaboration], Phys. Rev. D **85**, 052003 (2012).
- [56] C. Amsler et al. (Particle Data Group), Phys. Lett. B 667, 1 (2008).
- [57] S. J. Richichi et al. [CLEO Collaboration], Phys. Rev. D 63, 031103 (2001).
- [58] B. Aubert *et al.* [BaBar Collaboration], arXiv:0811.0564 [hep-ex].
- [59] E. S. Swanson, arXiv:1409.3291 [hep-ph].
- [60] P. Pakhlov and T. Uglov, arXiv:1408.5295 [hep-ph].