Национальный Исследовательский Центр «Курчатовский Институт» Федеральное Государственное Бюджетное Учреждение «Государственный Научный Центр Российской Федерации — Институт Теоретической и Экспериментальной Физики»

На правах рукописи

Голубков Дмитрий Юрьевич

Изучение рождения возбужденных состояний чармония и поиск распада $\mathrm{D}^0 \to \mu^+\mu^-$ на детекторе HERA-B

Специальность: 01.04.23 — физика высоких энергий

$ABTOPE\Phi EPAT$

диссертации на соискание учёной степени кандидата физико-математических наук

МОСКВА, 2014 г.

УДК 539.126 Работа выполнена в НИЦ «Курчатовский институт» ФГБУ «ГНЦ РФ Институт Теоретической и Экспериментальной Физики»

Научный руководитель:	кандидат физмат. наук, Егорычев Виктор Юрьевич (НИЦ «КИ» ФГБУ «ГНЦ РФ ИТЭФ», г. Москва)
Официальные оппоненты :	кандидат техн. наук Вадим Абдурахманович Канцеров (доцент НИЯУ «МИФИ», г. Москва)
	доктор физмат. наук Владимир Дмитриевич Самойленко (в.н.с. ФГБУ «ГНЦ РФ ИФВЭ» НИЦ «КИ», г. Протвино)
Ведущая организация:	Федеральное государственное бюджетное учреждение науки Физический институт им. П.Н. Лебедева Российской Академии Наук (г. Москва)

Защита состоится 29 апреля 2014 года в 11⁰⁰ часов на заседании диссертационного совета Д.201.002.01 в конференц-зале ФГБУ «ГНЦ РФ ИТЭФ» по адресу: г. Москва, ул. Большая Черёмушкинская, д. 25.

С диссертацией можно ознакомиться в библиотеке института. Автореферат разослан 28 марта 2014 г.

Ученый секретарь диссертационного совета, кандидат физ.-мат. наук,

В.В. Васильев

Введение

Актуальными задачами физики элементарных частиц является экспериментальная проверка параметров и предсказаний Стандартной Модели (СМ), а также поиск проявлений новых эффектов за её пределами. Настоящая работа посвящена анализу экспериментальных данных, набранных в многоцелевом эксперименте HERA–В по протон-ядерным взаимодействиям. Установка HERA–В являлась широкоапертурным передним спектрометром с фиксированной ядерной мишенью, снабжённым дилептонным триггером и обширной системой идентификации частиц.

Важной частью физической программы эксперимента HERA–В являлось изучение физики очарованных частиц. Особое внимание было уделено изучению состояний чармония J/ψ , $\psi(2S)$ и χ_c . Поиски "Новой Физики" концентрировались вокруг процессов редкого распада D⁰-мезонов, D⁰ $\rightarrow \mu^+\mu^-$, вероятность которого в рамках СМ сильно подавлена.

Образование чармония является очень привлекательным процессом с точки зрения проверки квантовой хромодинамики (КХД). Сечение образования чармония довольно велико для получения большой экспериментальной статистики. Очарованные кварки достаточно тяжелы для пертурбативных вычислений в рамках КХД процесса образования *cc*-пары. Но процесс формирования из *cc*-пары связанного состояния чармония на данный момент не до конца ясен. Теоретические предсказания основываются на моделях, которые содержат предположения и свободные параметры, и нуждаются в эксперименте для проверки и настройки параметров.

С точки зрения эксперимента, измерения относительного рождения различных состояний чармония предоставляют хорошую возможность для проверки теоретических подходов, поскольку большая часть неопределённостей в отношениях сечений сокращается. Одной из таких проверок механизма образования чармония является измерение параметра R_{χ_c} — относительного рождения χ_c -мезонов по сравнению с основным состоянием (J/ ψ -мезонами). Кроме того, дифференциальные распределения отношения R_{χ_c} более чувствительны к деталям теоретических моделей. Другой проверкой механизма образования чармония является измерение отношения рождения между χ_{c1} и χ_{c2} -мезонами. Поскольку количество и точность измерений подобного рода весьма мало, экспериментальное измерение отношения сечений $\sigma(\chi_{c1})/\sigma(\chi_{c2})$ способствует заметному улучшению существующей экспериментальной ситуации.

Общая характеристика работы

Диссертация включает две связанные между собой работы, выполненные на данных эксперимента HERA–B по протон-ядерным соударениям при энергии $\sqrt{s} = 42 \,\Gamma$ эB:

- поиск редкого распада очарованных мезонов $\mathrm{D}^0 \to \mu^+ \mu^-,$
- измерение сечений рождения возбуждённых состояний чармония χ_{c1} и χ_{c2} .

Анализ был выполнен на статистике, набранной при помощи димюонного триггера. Методика измерения, использованная в работах, основывается на нормировании числа сигнальных событий на число распадов в сходном (с точки зрения идентификации частиц и триггерования) канале распада основного состояния чармония $J/\psi \to \mu^+\mu^-$.

Актуальность темы диссертации

Исследования очарованных мезонов используются для проверки и уточнения Стандартной Модели, а также для поисков эффектов вне рамок СМ.

Процесс распада $D^0 \rightarrow \mu^+ \mu^-$ чувствителен к несохраняющим кварковый аромат нейтральным токам (flavor-changing neutral currents, FCNC), отсутствующим в первом порядке теории возмущений Стандартной модели. Величина относительной ширины данного распада, предсказываемая в рамках СМ, даже с учётом непертурбативных поправок оказывается чрезвычайно малой и составляет порядка ~ 10^{-13} . Однако в расширенных моделях вне рамок СМ вероятность распада $D^0 \rightarrow \mu^+ \mu^-$ может существенно возрастать за счет возникновения дополнительных вкладов новых частиц в петлевые процессы и достигать $10^{-11} \div 10^{-7}$, что приближается к возможностям уже существующих экспериментов.

Таким образом, актуальность улучшения экспериментального ограничения на относительную ширину распада D⁰ → $\mu^+\mu^-$ определяется поиском "Новой Физики" вне пределов СМ.

Вторая часть работы посвящена измерению сечения рождения χ_c -мезонов на ядерных мишенях в условиях эксперимента HERA–B.

Исследование образования чармония в адронных взаимодействиях необходимо для понимания процесса адронизации в непертурбативном режиме и эффектов, связанных с влиянием ядерной материи. Эти проблемы являются особенно важными, поскольку подавление выхода чармония в ядро-ядерных взаимодействиях рассматривается как возможный индикатор образования кваркглюонной плазмы.

Экспериментальное измерение доли J/ψ -мезонов, образующихся за счёт распадов возбуждённых состояний чармония (т.н. *"feed-down*" процесс) является важным источником информации, необходимой для проверки и настройки теоретических моделей. В настоящее время существует достаточно большой объём данных по рождению J/ψ -мезонов. Однако, доступные данные по сечениям рождения и даже экспериментально более простые относительные сечения рождения возбуждённых состояний чармония недостаточно точны.

Цели и задачи исследования

Работа посвящена экспериментальной проверке Стандартной модели и поиску "Новой Физики", приводящей к резкому увеличению относительной вероятности распада $D^0 \rightarrow \mu^+ \mu^-$. В задачи исследования входила разработка методики обработки данных, набранных с дилептонным триггером в эксперименте HERA–В и поиск этого редкого процесса.

В работе представлено экспериментальное измерение образования возбуждённых состояний чармония. В задачи исследования входила разработка экспериментальной методики и анализ данных для измерения отношения выхода $\chi_c \kappa J/\psi$ -мезонам в канале $\chi_c \rightarrow (J/\psi \rightarrow \mu^+\mu^-)\gamma$, отношения выхода $\chi_{c1} \kappa \chi_{c2}$ -состоянию и исследование кинематической и ядерной зависимости данных величин.

Научная новизна и значимость работы

Был получен верхний предел на относительную ширину FCNC-распада $D^0 \rightarrow \mu^+ \mu^-$, составивший:

$$\mathcal{B}(D^0 \to \mu^+ \mu^-) < 2.0 \times 10^{-6}$$

при 90% уровне доверительной вероятности результата, что улучшило существовавшее на момент публикации мировое значение верхнего предела на данный распад.

Анализ χ_c -состояний, которому посвящена вторая часть данной работы, представляет собой уникальное измерение, выполненное на различных ядерных мишенях при наибольшей из доступных энергий для экспериментов с фиксированной мишенью.

Большое число дилептонных событий, собранных экспериментом HERA–B, и высокая эффективность регистрации фотонов в электромагнитном калориметре позволили получить наибольшую в тот момент статистику χ_c -мезонов для экспериментов с фиксированной мишенью, и исследовать относительное рождение J/ψ и χ_c -мезонов с превышающей предыдущие эксперименты точностью. Использованный в анализе образец из ~ 15 000 χ_c -распадов является наибольшим из полученных прежде образцов χ_c -мезонов для протон-ядерных соударений.

Полученное значение доли J/ψ -мезонов, образующихся за счёт распадов χ_c -мезонов, оказалось равным

$$R_{\chi_c} = 0.188 \pm 0.013^{+0.024}_{-0.022}$$

где первая погрешность — статистическая, вторая — систематическая. В работе был также получен результат для относительного рождения χ_{c1} и χ_{c2} -состояний:

$$R_{12} = 1.02 \pm 0.40 \,,$$

где погрешность представляет собой комбинацию статистической и систематической неопределённостей.

По сравнению с предыдущими экспериментами на фиксированных мишенях, эксперимент HERA-В впервые расширил границы измеренного кинематического диапазона в ранее неисследованную область отрицательных значений Фейнмановской переменной J/ψ -мезона $x_F^{J/\psi}$, в которой, согласно существующим моделям, должны наиболее ярко проявляться различия в поведении эффектов взаимодействия чармония с ядерным веществом.

Данные представляют несомненную важность для дальнейшего развития моделей образования чармония как в адрон-адронных столкновениях, так и в моделях, учитывающих влияние ядерной материи на рождение и адронизацию тяжёлых кварков, и моделях, рассматривающих сигналы возникновения кваркглюонной плазмы.

Автор защищает

- Методику поиска редкого распада D⁰ → µ⁺µ⁻ в условиях эксперимента НЕRA-В по протон-ядерным взаимодействиям при импульсе 920 ГэВ/c.
- 2. Результат измерения верхнего предела на относительную ширину редкого распада $D^0 \to \mu^+ \mu^-$.
- 3. Методику восстановления сигнала χ_c -мезона в канале распада $\chi_c \to (J/\psi \to \mu^+ \mu^-) \gamma$ в условиях эксперимента HERA-B.
- 4. Результаты измерений отношений R_{χ_c} и R_{12} при импульсе 920 ГэВ/c и измерений кинематической и ядерной зависимостей отношения R_{χ_c} .

Практическая полезность

Работы были выполнены в рамках международной коллаборации HERA–B (физика высоких энергий). Тема диссертации соответствует одному из направлений физической программы эксперимента. Группа ИТЭФ принимала активное участие в создании спектрометра HERA–B, системы идентификации частиц, в создании математического обеспечения эксперимента HERA–B, эксплуатации детектора и последующем анализе экспериментальных данных.

Ограничение на относительную ширину распада D^0 -мезона, полученное в результате проведённого исследования, было включено в таблицы свойств D^0 -мезона, PDG 2006.

Результаты измерения сечений рождения χ_c -состояний необходимы для проверки теоретических моделей и корректной оценки фона за счёт обычных ядерных эффектов при поисках кварк-глюонной плазмы. Разработанная методика анализа, включающая нормировку на дилептонный распад J/ψ -мезона, может быть полезна для измерения сходных распадов в других экспериментах с высоким уровнем адронного фона.

Апробация и публикации

Материалы многократно обсуждались на рабочих совещаниях коллаборации HERA–B, докладывались на международных конференциях. Результаты работы и выводы диссертации докладывались и обсуждались на научных семинарах в МИФИ (г. Москва, Россия) и DESY (г. Гамбург, Германия). Опубликованы в следующих работах: [1–6].

Доклады на конференциях

- V. Egorytchev, D. Golubkov, "Search for the Flavor-Changing Neutral Current Decay D⁰ → μ⁺μ⁻ in 920 GeV Proton-Nucleus Collisions", 12th International Workshop on Deep Inelastic Scattering (DIS 2004), Kosice, Slovakia
- Голубков Д.Ю., Егорычев В.Ю., Зайцев Ю.М., Мединнис М., "Поиск распада D⁰ → µ⁺µ⁻, протекающего через нейтральные токи с несохранением аромата в протон-ядерных соударениях при энергии 920 ГэВ", конференция МИФИ-2005.
- Голубков Д.Ю., "Измерение отношения сечений рождения \(\chi_c\) и J/\(\psi\)-мезонов в эксперименте HERA-В", XVIII международная научная конференция Объединения молодых учёных и специалистов ОИЯИ, 2014 (Дубна).

Личный вклад диссертанта

Все изложенные в работе результаты были получены при основополагающем участии автора.

Диссертант также принимал деятельное участие в наборе и обработке физических данных эксперимента HERA–В: участвовал в поддержании пакета математического обеспечения эксперимента и поддержке баз данных, обеспечивал доступ к данным на магнитной ленте и через преселекции событий, на пусконаладочном этапе работы установки участвовал в работе группы по юстировке трековых детекторов, отвечал за архивацию данных при работе триггера четвёртого уровня, по завершении набора данных — за поддержание и использование компьютерных ферм триггеров второго и четвёртого уровня для обеспечения централизованной массовой реконструкции реальных данных и централизованного создания образцов данных моделирования методом Монте Карло.

Диссертант принимал непосредственное участие в анализе физических данных эксперимента. В частности, им был измерен верхний предел на значение относительной ширины распада $D^0 \rightarrow \mu^+\mu^-$. Диссертант провёл исследования по изучению χ_{c1} и χ_{c2} -состояний чармония в димюонном канале распада J/ψ -мезона. Им были измерены значения отношений R_{χ_c} и R_{12} , а также измерены кинематические и ядерная зависимость отношения R_{χ_c} .

Структура и объем диссертации

Диссертация состоит из данного Введения, **3** глав, Заключения и Списка использованной литературы. Объем диссертации **150** страниц, **42** рисунка, **32** таблицы, **109** наименований цитированной литературы. Работа построена следующим образом:

- <u>в Главе 1</u> описана экспериментальная установка HERA–B, на которой были получены анализируемые данные. Кратко описаны основные детекторы, входящие в состав спектрометра HERA–B, их особенности и основные характеристики, элементы математического обеспечения эксперимента, методика моделирования физических процессов и отклика установки,
- <u>в Главе 2</u> описана использованная методика обработки экспериментальных данных, и приведены результаты измерения относительной ширины распада $D^0 \to \mu^+ \mu^-$.
- <u>в Главе 3</u> описана методика обработки экспериментальных данных, использованная в анализе образования *\chi_c*-мезонов, и приведены результаты измерения отношений *R_{\chi_c}* и *R₁₂*, включая их зависимость от ядра мишени и кинематических переменных.
- Заключение суммирует и обобщает результаты, полученные в работе.

Основное содержание работы

Первая глава: краткое описание установки

Детектор HERA-В представлял собой универсальный широкоапертурный магнитный спектрометр,¹ работавший с использованием внутренней мишени протонного пучка с импульсом 920 ГэВ/*с* накопительного комплекса HERA в лаборатории DESY в Гамбурге (Германия). Спектрометр и триггерная система были разработаны для реконструкции в реальном времени J/ψ -мезонов, распадающихся на лептонные пары. В качестве мишени² использовались две станции, отстоящие друг от друга на 40 мм. Каждая станция состояла из четырех проволочек различного материала (углерод, титан, вольфрам, платина, алюминий), которые вводились в гало пучка. Положение проволочек дистанционно изменялось для поддержания постоянной скорости счета в пределах от 1 до 40 МГц.

Как показано на общем плане детектора (рис. 1), непосредственно за мишенью в области $0 \div 2$ м располагался вершинный детектор (VDS)³, который состоял из 64 микрополосковых кремниевых пластин (шаг считывания 50 мкм), объединённых в 8 станций. Детектор VDS использовался для восстановления первичной вершины *pA* взаимодействия и вторичных вершин от распадов долгоживущих частиц. (Разрешение дилептонной вершины распада J/ψ -мезона составляло ~450 мкм вдоль оси пучка и ~50 мкм в поперечной плоскости.)

За дипольным магнитом с интегралом поля 2.13 Тл · м была расположена основная трековая система (область 7 ÷ 13 м от мишени). Высокогранулярный внутренний трекер (ITR) перекрывал диапазон углов до 20 мрад при помощи микростриповых пропорциональных камер, снабжённых плёнками газового усиления (GEM-фольгами⁴). Внешний трекер (OTR)⁵, состоявший из пропорциональных дрейфовых камер гексагонального сечений с размером ячейки 5 и 10 мм, достигал точности восстановления точки на треке около 350 мкм. Характерное импульсное разрешение спектрометра в целом составляло $\Delta p/p \sim 1.5\%$.

Идентификация частиц эксперимента HERA-В обеспечивалась детектором

¹T. Lohse *et al.*, DESY PRC **94-02** (1994).

 $^{^2\}mathrm{K.}$ Ehret et~al., Nucl. Instrum. Meth. $\mathbf{A446}$ (2000) 190.

 $^{^{3}\}mathrm{C}.$ Bauer et~al., Nucl. Instrum. Meth. A501 (2003) 39.

 $^{{}^{4}}Gas$ Electron Multiplier

 $^{^5\}mathrm{H.}$ Albrecht et~al., Nucl. Instrum. Meth. A 555 (2005) 310.

Рис. 1: Общий план детектора по состоянию на 2002 г.

регистрации колец черенковского излучения (RICH)⁶, электромагнитным калориметром (ECAL)⁷ и мюонным детектором (MUON)⁸. Детектор RICH обеспечивал разделения пионов, каонов и протонов в широком диапазоне импульсов частиц. Электромагнитный калориметр типа "шашлык" состоял из трёх зон с различным размером ячейки и был оптимизирован для хорошего энергетического разрешения и улучшения идентификации электронов по отношению к адронам. Характерное энергетическое разрешение калориметра составляло $\delta E/E \simeq 12\%/\sqrt{E} \oplus 1.4\%$. Мюонная система состояла из четырёх плоскостей обычных газовых трубочных двухслойных камер, расположенных на расстояниях 15÷20 м от мишени. Мюонные станции были разделены поглотителями из армированного бетона и железа, останавливающими все заряженные частицы кроме мюонов с энергией более 4.5 ГэВ. Две последние плоскости были обору-

 $^{^{6}\}mathrm{I.}$ Ariño I. et al., Nucl. Instrum. Meth. A453 (2000) 289.

⁷A. Zoccoli *et al.*, Nucl. Instrum. Meth. **A446** (2000) 246.

⁸A. Arefev *et al.*, IEEE Trans. Nucl. Sci. **48** (2001) 1059.

дованы также чувствительными падовыми элементами, которые осуществляли катодное считывание и использовались для создания претриггерного сигнала.

Дилептонный триггер инициализировался либо мюонной, либо электронной системой претриггера. Многоуровневая система триггеров⁹ выделяла либо пару мюонов с суммарным поперечным импульсом более 700 МэВ/*c*, либо пару электронов с поперечной энергией более 1 ГэВ.

Детектор HERA–В перекрывал интервал углов $10\div160$ мрад в вертикальной плоскости, параллельной полю спектрометрического магнита и $10\div250$ мрад в плоскости поворота пучка. Это эквивалентно примерно 90% телесного угла в системе центра инерции (с.ц.и.) протон-нуклонного взаимодействия. Аксептанс установки охватывал область кинематических переменных J/ψ -мезона $x_F^{J/\psi} \in [-0.35, 0.15]$ и $p_T^{J/\psi} \leq 5 \Gamma \mathfrak{sB}/c$.

Данные, использованные в настоящей работе, были набраны в физических сеансах, проведённых на детекторе в период с октября 2002 по март 2003 года. За этот период было записано на магнитные ленты около 164 × 10⁶ событий с дилептонным триггером. Использовались мишени из углерода, титана и вольфрама в одно- и двухпроволочных конфигурациях мишени. Дилептонный триггер работал с фактором режекции порядка 4 × 10⁴, собирая в час до 1200 событий дилептонного распада J/ψ -мезонов при средней частоте неупругих взаимодействий пучка с мишенью 5 МГц.

Вторая глава: поиск распада $\mathrm{D}^0 o \mu^+ \mu^-$

Приведено подробное описание разработанной методики обработки экспериментальных данных, и получено экспериментальное ограничение на величину относительной ширины распада $D^0 \rightarrow \mu^+\mu^-$. Описание анализа предваряет краткое теоретическое введение, в котором раскрывается мотивация исследования, а также краткий обзор результатов предыдущих измерений.

В рамках СМ относительная ширина распада $D^0 \to \mu^+ \mu^-$ сильно подавлена (механизм Глэшоу-Илиопулоса-Маяни и требование сохранения спиральности). Оценка вклада в относительную ширину распада $D^0 \to \mu^+ \mu^-$ за счет процессов на малых расстояниях в рамках СМ дает значения порядка ~ $10^{-19} \div 10^{-18}$.

 $^{^9\}mathrm{V.}$ Balagura et al., Nucl. Instrum. Meth. A
494 (2002) 526.

Учет непертурбативных поправок,¹⁰ связанных с сильным взаимодействием на больших расстояниях, приводит к возможному увеличению вероятности этого распада примерно до 10^{-13} . В расширенных моделях вне рамок СМ вклады новых частиц в петлевые процессы могут привести к существенному увеличению вероятности распада $D^0 \rightarrow \mu^+ \mu^-$. В частности, согласно теоретическим предсказаниям,¹¹ наибольшей величины вероятность данного процесса достигает в минимальном суперсимметричном расширении СМ с несохранением R-четности, доходя до величины $\mathcal{B}(D^0 \rightarrow \mu^+ \mu^-) \leq 3.5 \times 10^{-7}$.

Поиск распада $D^0 \to \mu^+ \mu^-$ был проведен на данных, содержащих порядка 5 × 10⁷ событий протон-ядерных взаимодействий, собранных при помощи димюонного триггера. Кандидаты димюонных распадов D^0 и J/ ψ -мезонов, содержащиеся в рассматриваемом образце данных, анализировались совместно. К обоим каналам применялись одни и те же общие критерии отбора. Относительная ширина искомого распада выражается через число сигнальных событий $N_{D^0 \to \mu^+ \mu^-}$ и число событий в нормировочном канале $N_{J/\psi \to \mu^+ \mu^-}$, следующим образом:

$$\mathcal{B}(\mathrm{D}^{0} \to \mu^{+} \mu^{-}) = \frac{N_{\mathrm{D}^{0} \to \mu^{+} \mu^{-}}}{N_{\mathrm{J}/\psi \to \mu^{+} \mu^{-}}} \frac{a_{\mathrm{D}^{0}} \epsilon_{\mathrm{D}^{0}}}{a_{\mathrm{J}/\psi}} \frac{\sigma_{\mathrm{D}^{0}}^{pA}}{\sigma_{\mathrm{J}/\psi}^{pA}} \mathcal{B}(\mathrm{J}/\psi \to \mu^{+} \mu^{-}) , \qquad (1)$$

где \mathcal{B} — относительная вероятность распада, a_{D^0} и $a_{\mathrm{J}/\psi}$ — полная эффективность экспериментальной установки для $\mathrm{D}^0 \to \mu^+ \mu^-$ и $\mathrm{J}/\psi \to \mu^+ \mu^-$ при применении общих для обоих каналов ограничений, ϵ_{D^0} — эффективность ограничений, применяемых только к D^0 -кандидатам, а $\sigma_{\mathrm{D}^0}^{pA}$ и $\sigma_{\mathrm{J}/\psi}^{pA}$ — поперечные сечения образования D^0 и J/ψ -мезонов на ядро мишени.

Использование распада $J/\psi \to \mu^+\mu^-$ в качестве нормировочного приводит к тому, что при оценке ожидаемого числа сигнальных событий величина светимости и значительная часть систематических неопределённостей, связанных с триггерованием и идентификацией мюонов, сокращаются.

Основной вклад в фон к каналу распада $D^0 \to \mu^+ \mu^-$ вносят пары мюонов от распадов π^{\pm} или K^{\pm} на лету, случайно образующие вторичную вершину, отделенную от первичной вершины, в которой произошло протон-ядерное (pA)

¹⁰G. Burdman *et al.*, Phys.Rev. **D66** (2002) 014009, hep-ph/0112235.

¹¹G. Burdman, I. Shipsey, Ann. Rev. Nucl. Part. Sci. **53** (2003) 431, hep-ph/0310076

Рис. 2: Спектр инвариантной массы пар мюонов после применения минимальных требований отбора. Ясно видны пики на массах ω/ρ , ϕ , J/ψ и $\psi(2S)$ -состояний.

взаимодействие. Требования отбора, применяемые в анализе, были нацелены на то, чтобы минимизировать этот фон, сохраняя при этом высокую эффективность для распадов $D^0 \to \mu^+ \mu^-$.

Для анализа отбирались события, содержащие хотя бы одну реконструированную первичную вершину pA-взаимодействия, но не более, чем одну первичную вершину на мишень. Треки мюонных кандидатов были отобраны, используя минимальные требования на вероятность мюонной гипотезы, вычисляемую на основании информации от мюонного детектора, ограничения на качество восстановления трека (χ^2_{tr} /ст.св.) и на функцию правдоподобия каонной гипотезы трека, определяемой на основе информации от RICH-детектора. Распределение пар мюонных кандидатов разноимённых знаков по инвариантной массе после применения минимальных требований отбора показано на рис. 2.

В анализе рассматривались две области инвариантной массы, отвечающие положению J/ψ и D⁰-мезона, соответственно. Критерии отбора подразделялись на две части: общие (качественные) ограничения, применяемые как к области D⁰-мезона, так и к области J/ψ -мезона, и ограничения по времени жизни, применяемые только к димюонным кандидатам от потенциального распада D⁰-мезона. Общие критерии отбора включали ограничение на максимальную множественность треков в событии (влияющую на качество работы систем идентификации частиц), качество восстановления треков (χ^2_{tr} /ст.св.), вероятность каонной гипотезы трека (для подавления фоновых распадов $D^0 \to K^- \pi^+$, $D^0 \to K^- \pi^+ \pi^0$) и вероятность мюонной гипотезы трека. Дополнительно было введено ограничение на минимальный поперечный импульс мюонных треков $p_T^{\mu} > 0.7 \, \Gamma \Rightarrow B/c$, связанное с эффективным подавлением мюонов с ме́ньшим поперечным импульсом в триггере второго уровня. Кроме того, к димюонным кандидатам применялось требование наличия общей вершины хорошего качества. После применения критериев отбора, общих для D^0 и J/ψ -кандидатов, всего в анализе осталось ~ 46 000 распадов $J/\psi \to \mu^+\mu^-$ и ~ 238 000 событий в области D^0 -мезона.

Вторая группа критериев отбора была нацелена на выделение возможных D^0 -мезонов по их относительно большому времени жизни. Ограничения накладывались на три величины: разделение между первичной и вторичной вершинами в продольном направлении $\Delta z/\sigma(\Delta z)$, которое сравнивает расстояние вдоль направления пучка Δz между первичной и вторичной вершинами с погрешностью этого расстояния $\sigma(\Delta z)$, собственное время жизни димюонного D^0 -кандидата и прицельный параметр димюона по отношению к первичной вершине, определяемый как расстояние между первичной вершиной и точкой пересечения направления движения димюона с поперечной плоскостью при z-координате первичной вершины.

Для одновременного выбора всех трёх ограничений по времени жизни применялась трёхмерная "слепая"¹² оптимизация. При этом максимизировалось отношение эффективности детектора для $D^0 \rightarrow \mu^+\mu^-$ распада, определяемой методом моделирования Монте Карло (МК), к величине "экспериментальной чувствительности". Последняя величина определяется как средний верхний предел на число сигнальных событий с 90% уровнем доверительной вероятности, получаемый для статистического ансамбля экспериментов с данным ожидаемым уровнем фона, в предположении отсутствия вклада от сигнала.¹³

После применения всех требований отбора в области инвариантной массы D^0 -кандидатов $(1.59 \div 2.15 \,\Gamma \ni B/c^2)$ осталось 31 событие, как показано на рис. 3. Сигнальная область шириной 4σ ожидаемого сигнала $(1.815 \div 1.915 \,\Gamma \ni B/c^2)$

¹²метод т.н. "слепого" анализа требует исключать из рассмотрения данные в сигнальной области при выборе критериев отбора во избежание влияния на критерии отбора статистических флуктуаций малого числа событий в сигнальной области

¹³G.J. Feldman and R.D. Cousins, Phys. Rev. **D57** (1998) 3873.

Рис. 3: Спектр инвариантной массы пар мюонов в области D⁰-мезона после применения всех ограничений. Контрольные интервалы и сигнальная область выделены штриховыми линиями.

содержит всего три события.

При помощи МК-моделирования было проверено, что вклад в число фоновых событий от неправильно идентифицированных распадов очарованных частиц был пренебрежимо мал. Также было проверено, что применение поотдельности каждого из трёх ограничений по времени жизни не меняет форму массового распределения. Окончательная оценка ожидаемого среднего числа фоновых событий в сигнальной области была получена при помощи интерполяции контрольных интервалов инвариантной массы и составила 6.0 ± 1.2 . (Контрольные интервалы были выбраны шириной 8σ ожидаемого сигнала каждый: $1.59 \div 1.79$ и $1.94 \div 2.14 \Gamma_{9}B/c^{2}$.)

Необходимые значения сечений рождения D⁰ и J/ ψ -мезонов, а также параметр зависимости сечения от атомного номера, были взяты из предшествующих измерений,¹⁴ выполненных при энергии протонного пучка 800 ГэВ. Так как рассматриваемая область энергий находится далеко от порогов рождения D⁰ и J/ ψ -мезонов, было предположено, что отношение сечений рождения $\sigma_{D^0}^{pA}/\sigma_{J/\psi}^{pA}$, входящее в формулу (1), несущественно меняется при переходе от энергии пучка 800 к 920 ГэВ.

Эффективности всех критериев отбора определялись при помощи МК-мо-

¹⁴R. Ammar *et al.*, (LEBC-MPS Collab.), Phys. Rev. Lett. **61** (1988) 2185; K. Kodama *et al.*, (E653 Collab.), Phys. Lett. **B263** (1991) 573; M.H. Schub *et al.*, (E789 Collab.), Phys. Rev. **D52** (1995) 1307; T. Alexopoulos *et al.*, (E771 Collab.), Phys. Rev. **D55** (1997) 3927.

делирования; при этом эффективности отборов, связанных с идентификацией частиц, были дополнительно поправлены с учётом их зависимости от импульса, определённой на данных, используя мюоны из контрольного канала $J/\psi \rightarrow \mu^+\mu^-$. Отношение величин захвата детектора для отборов общих для D^0 и J/ψ -кандидатов составило $a_{D^0}/a_{J/\psi} = 0.287 \pm 0.028$. Квадратичная сумма вкладов в систематическую неопределённость от всех значимых источников, включая триггерную эффективность, геометрию мишени, мюонную и каонную идентификацию и статистику МК-моделирования, составила 9.8%. Эффективность дополнительных отборов, применяемых ко вторичной вершине D^0 -кандидатов, составила $\epsilon_{D^0} = (6.83 \pm 1.08) \times 10^{-2}$, где погрешность также включает сумму статистической и систематической неопределённостей. Предполагая степенную зависимость сечения рождения от атомного веса A, $\sigma^{pA} = \sigma^{pN} \times A^{\alpha}$, где $\alpha_{J/\psi} = 0.955 \pm 0.005^{15}$ и $\alpha_{D^0} = 1.02 \pm 0.03 \pm 0.02,^{16}$ данные, набранные на разных мишенях, были объединены в единую выборку.

При этом, вводя фактор чувствительности детектора F^{sens} , уравнение (1) может быть представлено в виде:

$$\langle N_{\mathrm{D}^{0}\to\mu^{+}\mu^{-}} \rangle = \mathcal{B}(\mathrm{D}^{0}\to\mu^{+}\mu^{-}) \times F^{\mathrm{sens}},$$
(2)

где

$$F^{\text{sens}} \equiv \sum_{i} \left(N^{i}_{\mathrm{J/\psi}} A^{\alpha_{\mathrm{D}^{0}} - \alpha_{\mathrm{J/\psi}}}_{i} \right) \left[\frac{a_{\mathrm{D}^{0}}}{a_{\mathrm{J/\psi}}} \epsilon_{\mathrm{D}^{0}} \right] \left[\frac{\sigma^{pN}_{\mathrm{D}^{0}}}{\sigma^{pN}_{\mathrm{J/\psi}} \mathcal{B}(\mathrm{J/\psi} \to \mu^{+}\mu^{-})} \right]$$

и суммирование происходит по материалам мишени.

Количество распадов в нормировочном канале $J/\psi \rightarrow \mu^+\mu^-$ составило: $N_{J/\psi}^C = 31010 \pm 200$ (стат.), $N_{J/\psi}^W = 12660 \pm 140$ (стат.), $N_{J/\psi}^{Ti} = 2430 \pm 60$ (стат.). Результирующее значение фактора чувствительности детектора составило $F^{\text{sens}} = (1.57 \pm 0.58) \times 10^6$, при этом доминирующим вкладом в неопределённость δF^{sens} являлась неопределённость сечения рождения $\sigma_{D^0}^{pA}$ при 800 ГэВ/с. Используя выражение (2) и учитывая систематические погрешности и оценку статистической флуктуации фона при помощи гибридного частотно-байесовского метода,¹⁷ был найден верхний предел на относительную ширину искомого

 $^{^{15}\}mathrm{M.J.}$ Leitch et~al. (E866/NuSea Collab.), Phys. Rev. Lett. 84 (2000) 3256.

¹⁶M.J. Leitch *et al.* (E789 Collab.), Phys. Rev. Lett. 72 (1994) 2542.

 $^{^{17}{\}rm G.C.}$ Hill, Phys. Rev. D 67 (2003) 118101.

$$\mathcal{B}(D^0 \to \mu^+ \mu^-) < 2.0 \times 10^{-6}$$
 при 90% С.L.,

(где C.L. — уровень доверительной вероятности результата), что улучшило существовавшее на момент публикации мировое значение верхнего предела на данный распад.

Третья глава: Измерение отношения сечений рождения χ_c и J/ψ -мезонов

Главу открывает введение в анализ рождения χ_c -мезона, обосновывающее актуальность данной темы исследования. Приводится краткое описание основных моделей образования чармония в адрон-адронных взаимодействиях и обзор результатов предыдущих измерений.

Теоретическое описание образования чармония разбивается на два шага: рождение пары тяжелых кварков на уровне партон-партонного взаимодействия, которое может быть рассчитано в рамках пертурбативной КХД, и переход пары в связанное состояние, включающий непертурбативные процессы и ядерные эффекты. Для описания образования кваркония были разработаны различные подходы, например, модель испарения цвета (CEM), модель цветовых синглетов (CSM) и модель нерелятивистской КХД (NRQCD). Образование возбуждённых состояний чармония чувствительно к деталям теоретических моделей, поэтому экспериментальное измерение относительного рождения χ_c -мезонов необходимо для проверки и настройки теоретических моделей. Также учёт вклада от распадов χ_c -состояний в подавление выхода J/ψ -мезонов важен при поисках кварк-глюонной плазмы в ядро-ядерных соударениях.

Восстановление χ_c -мезонов проводилось в моде распада $J/\psi\gamma$, при этом J/ψ -мезоны реконструировались как в $\mu^+\mu^-$, так и в e^+e^- -каналах распада.¹⁸ Параметр R_{χ_c} определялся как доля J/ψ -мезонов, возникающих в результате

¹⁸Сам автор непосредственно принимал участие в анализе димюонного канала. Измерения, выполненные параллельным анализом в электронном канале, применяли аналогичные методы и по возможности те же критерии отбора; в данной работе приводятся лишь их окончательные результаты.

радиационного распада χ_c -мезонов:

$$R_{\chi_c} = \frac{\sum_{i=1}^2 \sigma(\chi_{ci}) \mathcal{B}(\chi_{ci} \to \mathrm{J}/\psi\gamma)}{\sigma(\mathrm{J}/\psi)} \,,$$

где $\mathcal{B}(\chi_{ci} \to J/\psi\gamma)$ — относительные ширины соответствующих распадов χ_{ci} -мезонов, $\sigma(\chi_{ci})$ — их сечения рождения на нуклон и $\sigma(J/\psi)$ — полное сечение рождения J/ψ -мезонов на нуклон. Так как вероятность распада $\chi_{c0} \to J/\psi\gamma$ много меньше, чем для соответствующих распадов χ_{c1} и χ_{c2} -мезонов, вкладом χ_{c0} -мезона можно было пренебречь.

Для конкретных расчётов использовалось следующее выражение:

$$R_{\chi_c} = \frac{\frac{N_{\chi_{c1}} \cdot \varepsilon_{\mathrm{J}/\psi}^{\mathrm{dir}}}{\varepsilon_{\mathrm{J}/\psi}^{\chi_{c1}} \cdot \varepsilon_{\gamma}^{\chi_{c1}}} + \frac{N_{\chi_{c2}} \cdot \varepsilon_{\mathrm{J}/\psi}^{\mathrm{dir}}}{\varepsilon_{\mathrm{J}/\psi}^{\chi_{c2}} \cdot \varepsilon_{\gamma}^{\chi_{c2}}}}{N_{\mathrm{J}/\psi} + \frac{N_{\chi_{c1}}}{\varepsilon_{\gamma}} \cdot \left(\frac{\varepsilon_{\mathrm{J}/\psi}^{\mathrm{dir}}}{\varepsilon_{\mathrm{J}/\psi}^{\chi_{c1}}} - 1\right) + \frac{N_{\chi_{c2}}}{\varepsilon_{\gamma}} \cdot \left(\frac{\varepsilon_{\mathrm{J}/\psi}^{\mathrm{dir}}}{\varepsilon_{\mathrm{J}/\psi}^{\chi_{c2}}} - 1\right)},$$

где $N_{J/\psi}$, $N_{\chi_{c1}}$ и $N_{\chi_{c2}}$ — количество J/ψ , χ_{c1} и χ_{c2} -мезонов, $\varepsilon_{J/\psi}^{dir}$ — абсолютная эффективность регистрации прямых J/ψ -мезонов (учитывающая триггерование, реконструкцию и отбор событий), $\varepsilon_{J/\psi}^{\chi_{c1}}$ и $\varepsilon_{J/\psi}^{\chi_{c2}}$ — абсолютные эффективности регистрации J/ψ -мезонов от распадов χ_{c1} и χ_{c2} -мезонов, а $\varepsilon_{\gamma}^{\chi_{c1}}$ и $\varepsilon_{\gamma}^{\chi_{c2}}$ эффективности идентификации фотона от распадов χ_{c1} и χ_{c2} -мезонов.

Отношение образования двух χ_c -состояний определялось как

$$R_{12} \equiv \frac{R_{\chi_{c1}}}{R_{\chi_{c2}}} = \frac{\sigma(\chi_{c1})\mathcal{B}(\chi_{c1} \to \mathrm{J}/\psi\gamma)}{\sigma(\chi_{c2})\mathcal{B}(\chi_{c2} \to \mathrm{J}/\psi\gamma)} = \frac{N_{\chi_{c1}}}{N_{\chi_{c2}}} \times \frac{\varepsilon_{\mathrm{J}/\psi}^{\chi_{c2}} \cdot \varepsilon_{\gamma}^{\chi_{c2}}}{\varepsilon_{\mathrm{J}/\psi}^{\chi_{c1}} \cdot \varepsilon_{\gamma}^{\chi_{c1}}}.$$

Значения всех эффективностей определялись при помощи МК-моделирования. Эффективность регистрации фотона (ε_{γ}) дополнительно корректировалась с учётом сравнения эффективностей реконструкции электромагнитных ливней калориметром в моделировании и в данных. Для этого исследовались электронные треки, выделенные при помощи реконструкции γ -конверсий в веществе детектора перед магнитом.

Отбор J/ ψ -мезонов. Для того, чтобы анализ был внутренне самосогласован, одинаковые критерии отбора и процедуры анализа применялись и к $\mu^+\mu^-$,

Рис. 4: Распределение инвариантной массы пар $\mu^+\mu^-$ для углеродной (а), вольфрамовой (b), титановой (c) мишени, а также для суммарного образца данных (d). Ширина бина $15 \text{ M} \rightarrow \text{B}/c^2$.

Таблица 1: Число реконструированных J/ ψ -мезонов и ширина пика для каждого материала мишени в полном образце данных в димюонном канале.

Мишень	$N_{{ m J}/\psi}$	$\sigma_{\mathrm{J/\psi}} \left[\mathrm{M} \Im \mathrm{B} / c^2 \right]$
С	80400 ± 300	35.6 ± 0.2
W	37750 ± 200	36.0 ± 0.3
Ti	4700 ± 70	37.1 ± 0.7
Всего	122900 ± 400	35.8 ± 0.1

и к e^+e^- -каналам, за исключением требований идентификации лептонов. Для выделения J/ ψ -распадов применялись ограничения на качество реконструкции треков, функцию правдоподобия каонной гипотезы трека (для подавления распадов K-мезонов на лету), а также ограничения, специфические для e^+e^- и $\mu^+\mu^-$ -каналов. В $\mu^+\mu^-$ -канале использовалось ограничение на функцию правдоподобия мюонной гипотезы трека. В e^+e^- -канале применялись различные ограничения на геометрическое соответствие электронного трека и кластера в ECAL и на отношение энергии кластера к импульсу трека (E/p), зависящие от наличия фотона тормозного излучения, испущенного электронным треком перед магнитом.

Распределения инвариантной массы пар $\mu^+\mu^-$ для образцов данных, набранных на углеродной, вольфрамовой и титановой мишенях, а также суммарного образца данных, показаны на рис. 4. Параметризация включает пики J/ψ и $\psi(2S)$ -состояний и экспоненциальный фон. Сигнальные пики описывались суммой трёх кривых Гаусса с общим средним и радиационным хвостом¹⁹ для

¹⁹I. Abt *et al.* (HERA-B Collab.), Eur. Phys. J. C49 (2007) 545.

Рис. 5: Спектры разности масс ΔM в мюонном канале для С (a), W (b), Ti (c) и объединённого образца данных (d). Ширина бина 10 МэВ/ c^2 . В спектре после вычитания фона прерывистыми линиями показаны результаты подгонки χ_{c1} и χ_{c2} -состояний.

описания фотонов от процесса $\psi \to \mu^+ \mu^- \gamma$. Число J/ ψ -мезонов в пределах массового окна, использовавшегося для селекции χ_c -кандидатов, приведено в Таблице 1. Полный образец данных содержал 122 900 ± 400 J/ ψ -распадов в $\mu^+\mu^-$ -канале и 77 020 ± 700 в e^+e^- -канале распада.

Реконструкция χ_c -мезонов. Фотоны от распада χ_c -мезонов реконструировались при помощи электромагнитного калориметра. Для выделения фотонных кластеров применялись ограничения на минимальное число ячеек в кластере и отношение энергии ячейки с максимальным энерговыделением к полной энергии кластера (для подавления минимально ионизирующих частиц и адронных ливней). Также накладывались мягкие требования на значение полной энергии кластера (для подавления шума и для надёжного измерения энергии кластера (для подавления шума и для надёжного измерения энергии кластера (для подавления шума и для надёжного измерения энергии кластера ЕСАL-калориметром). Наконец, из анализа удалялись кластеры из центральной области с высокой загрузкой ($\sqrt{x^2/4 + y^2} < 22$ см, где x и y — координаты кластера). Реконструированные фотоны с поперечной энергией $E_T > 0.2$ ГэВ комбинировались с дилептонными кандидатами в интервале масс $|M(l^+l^-) - 3.1$ ГэВ/ $c^2| < 2\sigma$, где ширина σ зависела от дилептонного канала и ядра мишени (см. Таблицу 1). Для полученных χ_c -кандидатов анализировалось распределение разности масс $\Delta M \equiv M(J/\psi\gamma) - M(J/\psi)$.

Спектры разности масс ΔM для мюонного канала показаны на рис. 5 для всех трёх мишеней и суммарного образца данных. В верхней части рисунков точками показаны сигнальные спектры, включая результат подгонки с нало-

Мишень	$N_{\chi_{c1}+\chi_{c2}}$	$N_{\chi_{c1}} / N_{\chi_{c2}}$	$ σ(\chi_{c1}) [\Gamma ightarrow m B/c^2] $
С	6390 ± 420	1.20 ± 0.26	0.030
W	2830 ± 330	1.26 ± 0.52	0.032
Ti	390 ± 110	0.63 ± 0.63	0.030
Сумма	9630 ± 550	1.19 ± 0.24	0.031

Таблица 2: Результаты подгонки χ_c -сигнала в мюонном канале.

женными на них фоновыми спектрами (показаны сплошной линией). Зрительно сигнал и фон практически неразличимы за исключением области разности масс $0.3 < \Delta M < 0.6 \ \Gamma \Rightarrow B/c^2$, в которой сигнальная кривая проходит чуть выше фоновой кривой. Для визуальной оценки качества описания сигнала в нижней части рисунков изображены те же распределения после вычитания фона.

Энергетическое разрешение детектора для χ_c -мезона ($\sigma_{\chi_{c1}} \sim 31 \,\mathrm{M} \rightarrow \mathrm{B}/c^2$) сравнимо с разницей масс χ_{c1} и χ_{c2} -состояний ($M(\chi_{c2}) - M(\chi_{c1}) \simeq 46 \,\mathrm{M} \rightarrow \mathrm{B}/c^2$), из-за чего в спектре ΔM они сливаются в общий пик (см. рис. 5). Тем не менее оказалось возможно оценить число χ_{c1} и χ_{c2} -мезонов по-отдельности, а значит, и измерить отношение R_{12} . Для этого использовалась подгонка двумя кривыми Гаусса с несколькими фиксированными параметрами, а именно:

- 1. положение пика χ_{c1} -мезона фиксировалось на табличном значении;
- ширина пика χ_{c1}-мезона, σ_{χc1} фиксировалась согласно предсказаниям МКмоделирования (см. Таблицу 2);
- разность положений пиков χ_{c1} и χ_{c2} -мезонов фиксировалась на табличном значении разности масс;
- 4. отношение ширин χ_{c1} и χ_{c2} -мезонов, $\sigma_{\chi_{c2}} / \sigma_{\chi_{c1}} = 1.05$, фиксировалось согласно предсказаниям МК-моделирования.

В качестве свободных параметров подгонки остаются: общее число χ_c -мезонов, $N_{\chi_c} = N_{\chi_{c1}+\chi_{c2}}$, отношение $\frac{N_{\chi_{c1}}}{N_{\chi_{c2}}}$ и нормировка фоновой кривой. В Таблицу 2 сведены результаты значения параметров $N_{\chi_{c1}+\chi_{c2}}$ и $\frac{N_{\chi_{c1}}}{N_{\chi_{c2}}}$ подгонки двумя функциями Гаусса для мюонного канала.

Для проверки сделанных предположений относительно значений фиксированных параметров было проведено систематическое исследование результатов, к которым приводит освобождение различных зафиксированных параметров и их вариация вокруг выбранных значений. Также в качестве проверки число χ_c -мезонов оценивалось при помощи подгонки одиночной гауссовской кривой.

Описание фона. В распределении величины ΔM абсолютно доминировал комбинаторный фон. Для моделирования комбинаторной составляющей фона использовалась процедура смешанных событий. J/ ψ -кандидат из одного события ("событие \mathcal{A} ") комбинировался с фотонами из нескольких ($\simeq 20$) других отобранных событий ("события \mathcal{B} "). Для того, чтобы обеспечить сходство энергетических спектров фотонов, требовалось, чтобы каждое из событий \mathcal{B} имело ту же множественность нейтральных кластеров, что и событие \mathcal{A} . Кроме того, разность углов между векторной суммой поперечных импульсов всех фотонов в событиях \mathcal{A} и \mathcal{B} должны были отличаться друг от друга не более, чем на $2\pi/20$. Это обеспечивало общее кинематическое сходство событий, и, таким образом, близость аксептансов.

Единственным существенным источником физического фона являлся распад $\psi(2S) \rightarrow J/\psi \pi^0 \pi^0$, который давал вклад на уровне $\simeq 15\%$ от числа χ_c -мезонов. Вклад этого фона оценивался при помощи МК-моделирования и вычитался после соответствующей нормировки в процессе подгонки.

Систематические неопределённости. Вклады в систематическую неопределённость приведены в Таблице 3. Общая систематическая неопределённость отношения R_{χ_c} составила $^{+13}_{-12}$ % для обоих каналов распада J/ ψ -мезона.

В систематической неопределённости R_{12} абсолютно доминирует погрешность параметра подгонки $N_{\chi_{c1}}/N_{\chi_{c2}}$, наиболее чувствительная к абсолютной точности калибровки энергии в ECAL-калориметре. Абсолютная точность калибровки калориметра была оценена, используя сигнал $\pi^0 \to \gamma \gamma$, и составила $\sim 2\%$, что соответствует неопределённости положения $\Delta M(\chi_{c1})$ порядка $8 \text{ МэB}/c^2$, приводящей к вариации отношения $N_{\chi_{c1}}/N_{\chi_{c2}}$ и $\delta R_{12} \sim 35\%$. Изменение других параметров, фиксированных в подгонке, не приводило к видимым вариациям отношения R_{12} .

Источник	электронный канал	мюонный канал			
Вклад от реконструкции ${\mathrm J}/\psi o l^+ l^-$ -кандидатов					
	2.0	0.25			
Вклад от реконструкции $\chi_c \to J/\psi\gamma$ -событий					
массовый интервал J/ψ-кандидатов 2.0					
критерии отбора	7.0				
подсчёт числа χ_c -мезонов	4.0				
вычитание фона	+6 -4 %				
Вклад от определения эффективностей					
определение фотонной эффективности	5.0				
фактор коррекции фотонной эффективности	4.0				
модельная зависимость	4.0				
Общая неопределённость δR_{χ_c} (сист.)	+13.00% -11.7 $\%$	+12.80% -11.6 $\%$			
Общая неопределённость δR_{12} (сист.)	± 350	70			

Таблица 3: Систематические неопределённости отношений R_{χ_c} и R_{12} для двух дилептонных каналов (за исключением поляризации).

Результирующие отношения R_{χ_c} и R_{12} . Полное число событий в пике χ_c -мезона составило 9630 ± 550 в димюонном канале и 5250 ± 500 в диэлектронном канале. Полученное в результате значение параметра R_{χ_c} составило $R_{\chi_c} = 0.188 \pm 0.013 (\text{стат.})^{+0.024}_{-0.022} (\text{сист.})$ после усреднения по различным материалам мишени и в предположении отсутствия поляризации J/ψ и χ_c -мезонов (о поляризации см. ниже). Также было измерено отношение χ_{c1} к χ_{c2} -мезону, составившее $R_{12} = 1.02 \pm 0.40$ (погрешность отвечает комбинации статистической и систематической неопределённостей), что соответствует отношению сечений рождения $\frac{\sigma(\chi_{c1})}{\sigma(\chi_{c2})} = 0.57 \pm 0.23 (\text{стат.})$. Таким образом, согласно результату НЕRA-В, вклады в число J/ψ -мезонов от распадов χ_{c1} и χ_{c2} -мезонов примерно равны между собой, хотя и с очень большими неопределённостями. На рис. 6 (a, b) показаны отношения R_{χ_c} и $\frac{\sigma(\chi_{c1})}{\sigma(\chi_{c2})}$, измеренные в протон-ядреных соударениях при промежуточных энергиях.

Полные сечения рождения χ_c -мезонов. Сечения рождения χ_c -мезонов были вычислены, используя оценку полного сечения рождения J/ψ -мезонов²⁰ при энергии $\sqrt{s} = 41.6 \, \Gamma$ эВ, равную $\sigma(J/\psi) = (502 \pm 44)$ нбн/нукл., в предположении, что отношение R_{χ_c} не зависит от $x_F^{J/\psi}$ на всём диапазоне $x_F^{J/\psi}$ и $p_T^{J/\psi}$. Следующие значения были получены после усреднения по материалам мишени

²⁰F. Maltoni *et al.*, Phys. Lett. **B638** (2006) 202.

Рис. 6: Экспериментальные результаты в протон-нуклонных взаимодействиях: отношение R_{χ_c} (a), отношение сечений $\frac{\sigma(\chi_{c1})}{\sigma(\chi_{c2})}$ (b), сечение образования χ_{c1} -мезона (c) и χ_{c2} -мезона (d). Результат предыдущего измерения эксперимента НЕRA-В (2000) показан незаполненной звёздочкой. Результат настоящего анализа показан заполненной звёздочкой. Погрешности показаны без учёта возможного влияния поляризации.

и дилептонным каналам:

$$\sigma(\chi_{c1}) = 133 \pm 35$$
 нбн/нукл., $\sigma(\chi_{c2}) = 231 \pm 61$ нбн/нукл.,

что приводит к значению полного сечения рождения χ_c -мезонов, равному

$$\sigma(\chi_c) = 364 \pm 74$$
нбн/нукл.

На рис. 6 (c, d) показаны значения полных сечений рождения χ_{c1} и χ_{c2} -состояний, измеренные в протон-ядерных соударениях при промежуточных энергиях.

Кинематические распределения. Кроме результатов, усредненных по доступной области фазового пространства, была исследована зависимость параметра R_{χ_c} от фейнмановской переменной J/ψ -мезона $(x_F^{J/\psi})$ и от его поперечного импульса $(p_T^{J/\psi})$, см. рис. 7 (a, b). В пределах экспериментальных ошибок распределения согласуются с отсутствием зависимости, хотя более сложные зависимости также не могут быть исключены. Следует отметить, что измерение зависимости параметра R_{χ_c} от кинематических переменных было сделано впервые и отвечает области отрицательных значений переменной $x_F^{J/\psi}$.

Предполагая степенную зависимость инклюзивных сечений от атомного номера мишени, $\sigma^{pA} = \sigma^{pN} \times A^{\alpha}$, разность между параметрами *A*-зависимости для образования χ_c -мезонов (α_{χ_c}) и J/ ψ -мезонов ($\alpha_{J/\psi}$) может быть посчитана

Рис. 7: Зависимость отношения R_{χ_c} от параметров $x_F^{J/\psi}$ (a) и $p_T^{J/\psi}$ (b), (точки — углерод, треугольники — вольфрам). Зависимость параметра $\Delta \alpha = \alpha_{\chi_c} - \alpha_{J/\psi}$ от $x_F^{J/\psi}$ (c) и $p_T^{J/\psi}$ (d). Показаны только статистические погрешности.

из измеренных значений R_{χ_c} на углеродной и вольфрамовой мишенях:

$$\Delta \alpha \equiv \alpha_{\chi_c} - \alpha_{\mathrm{J}/\psi} = \frac{1}{\ln \frac{A_W}{A_C}} \times \ln \frac{R_{\chi_c}^W}{R_{\chi_c}^C},$$

где $A_W = 184$ и $A_C = 12$ — атомные номера вольфрама и углерода. Результаты для параметра $\Delta \alpha$ показаны в зависимости от $x_F^{J/\psi}$ и $p_T^{J/\psi}$ на рис. 7(с) и рис. 7(d). После усреднения по видимому диапазону $x_F^{J/\psi}$ и $p_T^{J/\psi}$ среднее значение составило $\Delta \alpha = 0.05 \pm 0.04$. (Все предсказания²¹ различных моделей образования для $\Delta \alpha$ находятся в пределах неопределённостей измерения.)

Учёт влияния поляризации. В работе было проведено подробное исследование возможных искажений результатов измерения R_{χ_c} и R_{12} вследствие зависимости аксептанса от поляризации J/ψ и χ_c -мезонов. Единственным доступным для использования ограничением являлось собственное измерение экспериментом HERA–В инклюзивной поляризации всех J/ψ -мезонов вне зависимости от её источника.²² Результаты исследования относятся ко всему кинематическому диапазону и выражаются в виде общих сдвигов центральных значений R_{χ_c} и R_{12} (относительно неполяризованных значений) и диапазонов вариации:

$$\frac{R_{\chi_c} - R_{\chi_c}^{\text{ref}}}{R_{\chi_c}^{\text{ref}}} = +9.5\%_{-7\%}^{+11\%}, \quad \frac{R_{12} - R_{12}^{\text{ref}}}{R_{12}^{\text{ref}}} = +0\%_{-11\%}^{+16\%}.$$

²¹R. Vogt, Nucl. Phys. **A700** (2002) 539.

²²P. Faccioli for the HERA-B Collab., Nucl. Phys. A783 (2007) e1; I. Abt *et al.* (HERA-B Collab.), Eur. Phys. J. C60 (2009) 517.

Здесь $R_{\chi_c}^{\text{ref}}$ и R_{12}^{ref} являются значениями, полученными в предположении нулевой поляризации. Общие сдвиги отвечают предположению, что вся наблюдаемая инклюзивная поляризация J/ψ -мезонов целиком обязана только поляризации J/ψ -мезонов, рождающихся напрямую. Верхняя и нижняя неопределённости отвечают максимальной вариации степени поляризации χ_c -состояний, которую допускают измерения при вариации параметра инклюзивной поляризации в пределах двух стандартных отклонений вокруг измеренного значения.

Заключение

В эксперименте HERA–В по протон-ядерным взаимодействиям при импульсе 920 ГэВ/*с* был проведён поиск редкого распада D⁰ → $\mu^+\mu^-$, обусловленного несохраняющими аромат нейтральными токами (FCNC). Использованная статистика была набрана при помощи дилептонного триггера.

- 1. Для анализа была разработана методика поиска распада $D^0 \to \mu^+ \mu^$ в условиях эксперимента HERA–B, основанная на выделении вторичной вершины и нормировании на число распадов в канале $J/\psi \to \mu^+ \mu^-$.
- 2. Был установлен верхний предел на величину относительной вероятности искомого распада:

$$\mathcal{B}(D^0 \to \mu^+ \mu^-) < 2.0 \times 10^{-6}$$
 при 90% С.L. [1].

Данный результат значительно улучшил существовавший на момент публикации верхний предел на относительную ширину данного распада, полученный коллаборацией BEATRICE: $\mathcal{B}(D^0 \to \mu^+\mu^-) < 4.1 \times 10^{-6} \quad (90\% \text{ C.L.})^{23}$. Кроме того, он улучшил доложенный незадолго до этого результат эксперимента CDF: $\mathcal{B}(D^0 \to \mu^+\mu^-) < 2.5 \times 10^{-6} \quad (90\% \text{ C.L.})^{24}$. Полученное значение верхнего предела было включено в таблицу свойств D⁰-мезона в PDG²⁵.

Также было проведено измерение доли J/ ψ -мезонов, образующихся через распады χ_c -состояний при взаимодействиях протонного пучка с углеродными,

 $^{^{23}\}mathrm{M.}$ Adamovich et al. (BEATRICE Collab.), Phys. Lett. B408 (1997) 469.

²⁴D. Acosta et al. (CDF Collab.), Phys. Rev. D68 (2003) 091101.

²⁵C. Amsler *et al.* (Particle Data Group Collab.), Phys. Lett. **B667** (2008) 1.

вольфрамовыми и титановыми мишенями [2, 3].

3. С этой целью была разработана методика восстановления сигнала χ_c -мезонов в моде распада $\chi_c \to J/\psi\gamma$ в условиях эксперимента HERA–В по протон-ядерным взаимодействиям.

Реконструкция J/ ψ -мезонов проводилась как в $\mu^+\mu^-$, так и в e^+e^- -каналах распада. Суммарная статистика ~ 15000 распадов χ_c -мезона на момент публикации явилась наибольшим числом зарегистрированных распадов χ_c -мезона для экспериментов с фиксированной мишенью.

4. В результате анализа были измерены отношения R_{χ_c} и R_{12} , а также кинематические и ядерная зависимость отношения R_{χ_c} при импульсе 920 ГэВ/с.

Измеренная величина относительного рождения χ_c -мезонов по сравнению с J/ ψ -мезонами составила

$$R_{\chi_c} = 0.188 \pm 0.013 (\text{стат.})^{+0.024}_{-0.022} (\text{сист.})$$

в предположении отсутствия поляризации чармония. Результат не противоречит большинству опубликованных ранее измерений в pN взаимодействиях вне зависимости от энергии в центре масс и кинематического диапазона измерения. Настоящий результат отдаёт предпочтение предсказаниям модели NRQCD²⁶ по сравнению с CEM или CSM-моделями. Вместе с опубликованным экспериментом HERA–В измерением рождения $\psi(2S)$ -мезона²⁷ оценка доли J/ ψ -мезонов, образующихся за счёт распадов возбужденных состояний чармония, составила порядка ~ 27%. Данная оценка ниже, чем обычно предполагалось при описании данных по поиску кварк-глюон ной плазмы.

Измеряя вклады от χ_{c1} и χ_{c2} -мезонов по-отдельности, было получено отношение образования двух этих состояний:

$$R_{12} = R_{\chi_{c1}} / R_{\chi_{c2}} = 1.02 \pm 0.40$$

и отношение их сечений рождения $\frac{\sigma(\chi_{c1})}{\sigma(\chi_{c2})} = 0.57 \pm 0.23$, где погрешности отвечают суммам статистических и систематических неопределённостей. Используя

²⁶R. Vogt, Nucl. Phys. A700 (2002) 539.

²⁷I. Abt et al. (HERA-B Collab.), Eur. Phys. J. C49 (2007) 545.

оценку полного сечения рождения J/ψ -мезонов при энергии $\sqrt{s} = 41.6 \, \Gamma$ эВ, соответствующие полные сечения рождения χ_{c1} и χ_{c2} -мезонов составили: $\sigma(\chi_{c1}) = 133 \pm 35$ нбн/нукл. и $\sigma(\chi_{c2}) = 231 \pm 61$ нбн/нукл.

Впервые было проведено исследование зависимости отношения R_{χ_c} от кинематических переменных J/ψ -мезона, $x_F^{J/\psi}$ и $p_T^{J/\psi}$. В пределах точности измерения какой-либо зависимости обнаружено не было. Зависимость рождения χ_c -мезонов от атомного веса в пределах ограниченного объёма статистики данного измерения не отличается от зависимости рождения J/ψ -мезонов от атомного веса мишени.

Данные эксперимента HERA–В отвечают уникальному диапазону энергии в системе центра масс, $\sqrt{s} = 41.6 \, \Gamma$ эВ. Также исследованная область отрицательных значений переменной x_F ранее не была охвачена другими экспериментами. Полученные данные дополняют выполненные ранее в эксперименте HERA–В измерения дифференциального сечения рождения J/ψ -мезонов в зависимости от переменной x_F и поперечного импульса.

Впервые было проведено подробное исследование влияния поляризации чармония на измеренные значения отношений R_{χ_c} и R_{12} , и было исследовано поведение отношений R_{χ_c} и R_{12} как функции наблюдаемой инклюзивной поляризации J/ψ -мезонов.

Список публикаций по теме диссертации

- [1] I. Abt, ..., D. Goloubkov, et al. (HERA-B Collab.), "Search for Flavor-Changing Neutral Current Decay D⁰ → µ⁺µ⁻ with the HERA-B Detector", Phys. Lett.
 B596 (2004) 173-183; препринт DESY 04-086, arXiv:hep-ex/0405059 (2004).
- [2] A. Zoccoli, ..., D. Goloubkov et al. (HERA-B Collab.), "Charm, beauty and charmonium production at HERA-B", Eur. Phys. J. C43 (2005) 179.
- [3] I.Abt, ..., D. Goloubkov *et al.* (HERA-B Collab.), "Production of the Charmonium States χ_{c1} and χ_{c2} in Proton Nucleus Interactions at $\sqrt{s} = 41.6$ GeV", Phys. Rev. **D79** (2009) 012001, arXiv:0807.2167 [hep-ex].
- [4] Д.Ю. Голубков, В.Ю. Егорычев, Ю.М. Зайцев "Поиск распада $D^0 \rightarrow \mu^+\mu^-$ ", Вестник МГУ. Серия З. Физика. Астрономия. 5 (2013) 23-33; Moscow University Physics Bulletin, 2013, Vol. 68, No. 5, pp. 367-372.
- [5] Д.Ю. Голубков, В.Ю. Егорычев, Ю.М. Зайцев "Поиски распада $D^0 \to \mu^+ \mu^$ на адронных коллайдерах", Ядерная Физика. vol. 77, No. 2 (2014) с. 234-240;
- [6] V. Egorytchev, D. Goloubkov, "Search for the Flavor-Changing Neutral Current Decay D⁰ → μ⁺μ⁻ in 920 GeV Proton-Nucleus Collisions", Proc. 12th International Workshop on Deep Inelastic Scattering (DIS 2004), Kosice, Inst. Exp. Phys. SAS, 2004. p.771-775;
- [7] Голубков Д.Ю., Егорычев В.Ю., Зайцев Ю.М., Мединнис М., "Поиск pacnaда D⁰ → µ⁺µ⁻, протекающего через нейтральные токи с несохранением аромата в протон-ядерных соударениях при энергии 920 ГэВ", материалы конференции МИФИ-2005.
- [8] Голубков Д.Ю., "Измерение отношения сечений рождения \(\chi_c\) и J/\(\psi_c\) мезонов в эксперименте HERA-B", материалы XVIII международной научной конференции Объединения молодых учёных и специалистов ОИЯИ (ОМУС), 2014 (Дубна).