

НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ ЦЕНТР "КУРЧАТОВСКИЙ ИНСТИТУТ" ИНСТИТУТ ТЕОРЕТИЧЕСКОЙ И ЭКСПЕРИМЕНТАЛЬНОЙ ФИЗИКИ

на правах рукописи

АНДРЕЙЧИКОВ Максим Александрович

Динамика связанных состояний в квантовой

хромодинамике и квантовой электродинамике

в сильных магнитных полях

Специальность 01.04.02 – Теоретическая физика

ДИССЕРТАЦИЯ

на соискание степени кандидата физико-математических наук

> научный руководитель: д.ф.-м.н. Б.О. Кербиков

Москва, 2015

Оглавление

1	Вве	Введение		
	1.1	Обща	я характеристика работы	4
		1.1.1	Актуальность темы	4
		1.1.2	Задачи диссертационного исследования	6
		1.1.3	Научная новизна и результаты диссертационного исследования	7
		1.1.4	Научная и практическая значимость работы	7
		1.1.5	Личный вклад автора	8
		1.1.6	Апробация результатов и публикации	8
		1.1.7	Публикации автора по теме диссертации	8
		1.1.8	Структура диссертации	9
	1.2	Обзор	работы	9
2	Обз	вор ме:	года полевых корреляторов	14
	Релятивистские гамильтонианы адронов и барионов. Псевдоим-			
3	Рел	ятиви	стские гамильтонианы адронов и барионов. Псевдоим-	
3	Рел пул	ативи ъс и р	стские гамильтонианы адронов и барионов. Псевдоим- азделение переменных.	21
3	Рел пул 3.1	ятиви ьс и р Нейтр	стские гамильтонианы адронов и барионов. Псевдоим- азделение переменных. ральный мезон	21 22
3	Рел пул 3.1 3.2	ятиви ьс и р Нейтр Нейтр	стские гамильтонианы адронов и барионов. Псевдоим- азделение переменных. ральный мезон	21 22 30
3	Рел пул 3.1 3.2 3.3	іятиви ьсир Нейтр Нейтр Модел	стские гамильтонианы адронов и барионов. Псевдоим- азделение переменных. ральный мезон	21 22 30 38
3	Рел пул 3.1 3.2 3.3 Пер	а ятиви ьс и р. Нейтр Нейтр Модел отурба	стские гамильтонианы адронов и барионов. Псевдоим- азделение переменных. ральный мезон	 21 22 30 38 40
3	Рел пул 3.1 3.2 3.3 Пер 4.1	иятивия ьс и р. Нейтр Нейтр Модел отурба Одног	стские гамильтонианы адронов и барионов. Псевдоим- азделение переменных. Фальный мезон	 21 22 30 38 40 40
3	Рел пул 3.1 3.2 3.3 Пер 4.1 4.2	иятивия ьс и р Нейтр Нейтр Модел отурба Одног Спин-	стские гамильтонианы адронов и барионов. Псевдоим- азделение переменных. альный мезон	 21 22 30 38 40 40
3	Рел пул 3.1 3.2 3.3 Пер 4.1 4.2	иятивия ьс и р Нейтр Нейтр Модел отурба Одног Спин- фокус	стские гамильтонианы адронов и барионов. Псевдоим- азделение переменных. Фальный мезон	 21 22 30 38 40 40 46
3	Рел пул 3.1 3.2 3.3 Пер 4.1 4.2 4.3	иятивия ьсир Нейтр Нейтр Модел отурба Одног Спин- фокус Одног	стские гамильтонианы адронов и барионов. Псевдоим- азделение переменных. альный мезон	 21 22 30 38 40 40 46 57

Приложение А: Смешивание спиновых состояний бариона в магнит-	
ном поле.	65
Благодарности	67
Список иллюстраций	68
Список таблиц	70
Литература	71

Глава 1

Введение

1.1 Общая характеристика работы

1.1.1 Актуальность темы

На протяжении последних лет в фундаментальной физике высоких энергий был достигнут существенный прогресс. Огромный поток данных был получен после запуска Большого Адронного Коллайдера в 2010 году. Другой источник экспериментальных данных для физики высоких энергий - астрофизические наблюдения. Большой интерес представляет изучение свойств материи в сверхсильных магнитных полях, таких, что $eB \sim 10^{18}~G \sim m_\pi^2$. Поля столь большой величины непосредственно влияют на динамику кварков. Это приводит к тому, что частицы, образованные из кварков с помощью сильного взаимодействия - адроны (мезоны и барионы) могут существенно изменять свою структуру и физические свойства, будучи помещенными в столь сильное поле. На первый взгляд кажется, что сверхсильные магнитные поля представляют лишь теоретический интерес - такие огромные значения кажутся недостижимыми на практике. В последнее время привлекают внимание магнетары [1] - нейтронные звезды, обладающие сильным магнитным полем на четыре порядка меньшей величины. Вопрос о происхождении магнитного поля этих объектов до сих пор остается открытым. В то же время, для изучения внутренней структуры магнетаров необходимо иметь хотя бы приближенное уравнение состояния кварковой материи в сверхсильном магнитном поле. Магнитные поля нужной величины создаются на короткое время в столкновениях тяжелых ионов в ускорителях RHIC и LHC [2, 3]. Третьим возможным перспективным направлением получения сверхсильных магнитных полей могут служить мощные лазеры - поля на два порядка меньше швингеровского предела были уже достигнуты на таких установках [4].

Целью данного исследования было изучение физических свойств кварковой материи (при нулевом химическом потенциале) в постоянном сверхсильном магнитном поле из первых принципов, то есть непосредственно из лагранжиана КХД + КЭД были получены массовые спектры мезонов и барионов, при этом было сделано предположение о том, что вакуум КХД заполнен хаотическими глюонными полями (корреляционная длина $\lambda \sim 1 \ GeV^{-1}$). Полученные спектры показали согласие с решеточными расчетами [5, 69].

В ходе исследования были обнаружены и исследованы интересные эффекты, вызывающие в КХД + КЭД в сверхсильным магнитным поле - экранирование потенциала одноглюонного обмена и так называемая магнитная фокусировка. Известно, что КХД является асимптотически свободной теорией. Асимптотическая свобода является непосредственным следствием антиэкранирования одноглюонного обмена глюонными петлями. Магнитное поле никак не может взаимодействовать с глюонами, но в то же время может непосредственно влиять на матричный элемент одноглюонного обмена через поляризационный оператор кваркантикварковых петель. Вычисление данного матричного элемента в сверхсильном магнитном поле было выполнено и показало, что КХД становится не только асимптотически свободной при стремлении переданного импульса q к бесконечности, но также потенциал экранируется в при стремлении магнитного поля к бесконечности.

Другим эффектом, потребовавшим отдельного рассмотрения, оказался эффект магнитной фокусировки. Как было сказано ранее, сверхсильное магнитное поле оказывает непосредственное влияние на динамику кварков. Например, для адронов, в которых кварки удерживаются в связанном состоянии явлением конфайнмента, поле является сверхсильным, когда $eB \sim \sigma$, где σ - натяжение глюонной струны. Для атомных систем, например, для атома водорода, сверхсильное магнитное поле $eB \sim Ry$, где Ry - постоянная Ридберга. С уведичением магнитного поля выше характерной энергии связи уровни спектра связанных состояний начинают трансформироваться в уровни Ландау. Это приводит к тому, что динамика системы в плоскости поперек магнитного поля определяется, в основном, магнитным полем, в то время как вдоль магнитного поля - в основном связывающими силами (сильное или электромагнитное взаимодействие). Таким образом, с увеличением магнитного поля адрон или атом начинают сжиматься в плоскости перпендикулярной магнитному полю. Это приводит к тому, что $|\Psi(0)|^2$ возрастает $\Psi(r)$ - волновая функция системы в относительных координатах $r = x_1 - x_2$). Рост $|\Psi(0)|^2$ приводит к тому, что увеличиваются вероятности распадов, сила спин-спинового (сверхтонкого) взаимодействия и другие явления, где важно перекрытие волновых функций участвующих частиц. В ходе исследования было обнаружено, что рост спин-спинового взаимодействия в магнитом поле в адронах из-за магнитной фокусировки может привести к так называемому коллапсу, когда масса частицы становится отрицательной. В то же самое время, эффективная КХД+КЭД, полученная после усреднения по хаотическим глюонным полям, уже содержит естественный параметр обрезания $\lambda \sim 1 \ GeV^{-1}$ и δ -функциональное взаимодействие должно быть усреднено по этому масштабу, что устраняет возможный коллапс.

1.1.2 Задачи диссертационного исследования

Диссертационное исследование нацелено на решение следующих задач.

- Получение эффективного релятивистского гамильтониана для мезонов и барионов с помощью формализма Фейнмана-Фока-Швингера и метода корреляторов.
- Вычисление массовых спектров мезонов и барионов в зависимости от величины внешнего постоянного магнитного поля.
- Рассмотрение пертурбативных поправок собственная энергия, одноглюонный обмен, однопионный обмен и спин-спиновое взаимодействие в магнитном поле.
- Иллюстрация явления магнитной фокусировки и возникновения поправки к сверхтонкому расщеплению на примере атома водорода.
- Вычисление потенциала одноглюонного обмена в сверхсильном магнитном поле и демонстрация экранировки потенциала парами $q\bar{q}$ ри $eB \to \infty$.

1.1.3 Научная новизна и результаты диссертационного исследования

Следующие новые научные результаты выносятся на защиту.

- Получены массовые спектры для нейтральных и заряженных мезонов, а также для нейтрона с помощью метода корреляторов в сильном магнитном поле.
- Получены аналитические формулы для поправки к сверхтонкому расщеплению атома водорода из-за эффекта магнитной фокусировки в магнитном поле.
- Получено аналитическое выражение для потенциала одноглюонного обмена в сильном магнитном поле, показано, что матричный элемент ⟨V_{coul}⟩ → 0 при В → ∞, что является непосредственным следствием экранирования взаимодействия парами кварк-антикварк и препятствует кулоновскому коллапсу адронов в сильном магнитном поле.
- Показано, что в рамках используемой модели масса основного состояния адронов в магнитном поле всюду остается положительной при увеличении магнитного поля.

Все представленные к защите результаты являются оригинальными и новыми разработками на момент опубликования.

1.1.4 Научная и практическая значимость работы

Результаты данного исследования могут иметь применение для анализа процессов в сверхсильных магнитных полях протекающих при столкновении тяжелых ионов в экспериментах на RHIC и LHC. Массовые спектры барионов могут быть востребованными для получения уравнений состояния нейтронной материи в экстремальных условиях - больших двалениях и магнитных полях. Данные уравнения состояния используются в астрофизике для анализа процессов, происходящих в нейтронных звездах (магнетарах). Также данное исследование иллюстрирует возможности, предоставляемые методом корреляторов для описания систем с сильным взаимодействием.

1.1.5 Личный вклад автора

На основе работ [49] - [53] автором было проведено разделение переменных центра инерции и внутренних степеней свободы для релятивистских гамильтонианов (полученных в формализме метода корреляторов) для двух- и трехчастичных нейтральных систем и получены аналитические выражения для спектров данных гамильтонианов. Был проведен анализ асимптотик выражения для потенциала одноглюонного обмена с учетом экранирования потенциала кварк-антикварковыми петлями в магнитном поле. Была сформулирована проблема коллапса, оисходящего в сверхсильном поле из-за усиления спин-спинового взаимодействия при фокусировке волновой функции магнитным полем. Были получены аналитические выражения для поправок к сверхтонкому расщеплению в атоме водорода, возникающих из-за фокусировки волновой функции в магнитном поле. Был проведен анализ зависимости матричного элемента однопионного обмена от магнитного поля. По полученным аналитическим зависимостям были построены массовые спектры мезонов и барионов в магнитном поле, а также численно получены поправки к массе, возникающие из-за одноглюонного обмена, спин-спинового взаимодействия, собственной энергии и однопионного обмена.

1.1.6 Апробация результатов и публикации

Результаты, представленные в диссертации, докладывались и обсуждались на теоретических семинарах ИТЭФ, 50-й, 51-й и 52-й научных конференциях МФТИ, а также на пленарном докладе на Сессии ОФН ЯФ 2013 года. По теме диссертационного исследования было опубликованы 4 печатные работы, 4 из которых входят в перечень ВАК.

1.1.7 Публикации автора по теме диссертации

1. M.A. Andreichikov, V.D. Orlovsky, Yu.A. Simonov, "Asymptotic Freedom in Strong Magnetic Fields", Phys.Rev.Lett. **110**, 162002 (2013). arXiv:1211.6568.

2. M.A. Andreichikov, B.O. Kerbikov, V.D. Orlovsky, Yu.A. Simonov, "Meson Spectrum in Strong Magnetic Fields", Phys.Rev.D 87, 094029 (2013), arXiv:1304.2533.

3. M.A. Andreichikov, B.O. Kerbikov, V.D. Orlovsky, Yu.A. Simonov, "Neutron in Strong Megnetic Field", Phys.Rev.D **89**, 074033 (2014), arXiv:1212.2212.

4. M.A. Andreichikov, B.O. Kerbikov, Yu.A. Simonov, "Magnetic Field Focusing of Hyperfine Interaction in Hydrogen", JETP Lett. **99**, 5, p.286 (2014), arXiv:1304.2516.

1.1.8 Структура диссертации

Диссертация состоит из введения, обзорной главы, основной части, содержащей две главы по три параграфа в каждой, и заключения, а также одного приложения. В диссертации 74 страницы, включая 10 рисунков. Список литературы содержит 71 ссылку.

1.2 Обзор работы

Во введении (Глава 1) рассматривается актуальность выбранной темы, приведены общие характеристики диссертации, дан краткий обзор диссертационной работы.

Во второй главе приводится краткий обзор метода корреляторов. В конце главы приводятся выражения для функции Грина мезона, состоящего из пары кварк-антикварк, полученные в представлении Фейнмана-Фока-Швингера. Данная функция Грина проецируется на спектр связанных состояний системы, и задача о массовом спектре сводится к задаче о спектре эффективного релятивистского гамильтониана.

В третьей главе рассматривается задача о спектре релятивистских гамильтонианов для нейтральных мезонов и барионов, а также приближение, позволяющее вычислить спектр заряженных адронов при условии, что заряды составляющих их кварков равны. Для нейтральных адронов задача о спектре решается точно, потому что в такой системе существует интеграл движения - псевдоимпульс. Поскольку релятивистский гамильтониан включает в себя всю непертурбативную динамику кварков, гамильтониан содержит потенциал конфайнмента. Для точного решения задачи потенциал с помощью процедуры минимизации сводится к квадратичному потенциалу. Точность этого приближения также обсуждается.

Известно, что для проблемы многих частиц в релятивистской квантовой теории существует проблема несогласованности собственных времен различных частиц. Согласно методу корреляторов вводится монотонное время *s*, а собственные времена кварков рассматриваются как флуктуации около монотонного времени. После усреднения по флуктуациям (интегралы вычисляются методом стационарной фазы), процедура вычисления спектра релятивистского гамильтониана содержит дополнительный шаг - минимизацию по вспомогательным переменным ω_1 , ω_2 . Далее вычисляются волновые функции мезонов и барионов, которые наглядно показывают, каким образом адроны деформируются в сверхсильном магнитном поле. Также подчеркивается важность этой деформации для явления магнитной фокусировки, которое будет подробно обсуждаться в следующих главах. В конце главы приводятся спектры релятивистских гамильтонианов мезонов и барионов в зависимости от внешнего магнитного поля. В дальнейшем непертурбативная часть массы называется динамической массой.

В четвертой главе рассматриваются пертурбативные поправки к динамической массе для двух- и трехчастичных систем. Глава разбита на три раздела: 4.1) одноглюонный обмен и асимптотическая свобода в магнитном поле, 4.2) спин-спиновое взаимодействие и магнитная фокусировка и 4.3) однопионный обмен в магнитном поле.

В разделе 4.1 рассматривается вычисление потенциала одноглюонного обмена в магнитном поле. Как было сказано ранее, волновые функции, а с ними и форма адронов в сверхсильном магнитном поле испытывают сильное изменение, система сжимается в плоскости, перпендикулярной направлению магнитного поля. Усреднение потенциала одноглююнного обмена по волновой функции согласно теории возмущений приводит к тому, что с увеличением магнитного поля данная поправка, имеющая отрицательный знак, дает неконтролируемое уменьшение массы, вплоть до обращения массы в нуль при поле $\sim 10 \ GeV^2$. Этого явления коллапса можно избежать, если учесть, что кварк-антикварковые петли, которые входят в потенциал одноглюонного обмена через поляризационный оператор, находятся в магнитном поле. Аналогичная работа в случае КЭД по экранировке кулоновского потенциала электрон-позитронными парами в магнитном поле была выполнена авторами [7] - [11]. Такая модификация потенциала исключает проблему коллапса - поправка выходит на насыщение при $\sim 12 \ GeV^2$, а в дальнейшем, при асимптотически больших магнитных полях, стремится к нулю. Результаты, приведенные в данном разделе, опубликованы в [12].

Раздел 4.2 посвящен вычислению поправки за счет спин-спинового взаимодействия, в дальнейшем называемого сверхтонким взаимодействием, а также иллюстрации явления магнитной фокусировки на примере атома водорода. Сверхтонкое взаимодействие носит точечный характер, то есть пространственная зависимость имеет вид $\delta(r)$, где r - относительная координата частиц. При пертурбативном рассмотрении, то есть при усреднении матричного элемента по волновой функции, возникает множитель $|\Psi(0)|^2$. Как было указано ранее, в сверхсильных магнитных полях система начинает сжиматься, приобретая форму эллипсоида, вытянутого вдоль направления магнитного поля, при этом $|\Psi(0)|^2$ растет линейно по магнитному полю. Такой неограниченный рост приводит к коллапсу, повторяя ситуацию, рассмотренную в предыдущем пункте для одноглюонного обмена. Однако при выводе релятивистского гамильтониана было сделано предположение о том, что вакуум заполняют хаотические глюонные поля с корреляционной длиной $\lambda \sim 1 \ GeV^{-1}$. Таким образом, при построении теории возмущений имеется естественный параметр обрезания и δ -функциональное взаимодействие должно быть "размазано" по характерному масштабу λ . Такая процедура приводит к насыщению сверхтонкого взаимодействия при больших магнитных полях и предотвращает коллапс.

Явление магнитной фокусировки носит общий характер для систем, помещенных в магнитное поле, и оказывает значительное влияние на все явления, в которых взаимодействие имеет точечный характер (т.е. потенциал в виде δ -функции). Из-за магнитной фокусировки могут изменяться константы распада [15], величина сверхтонкого расщепления, и т.д. Во второй части раздела 4.2 рассматривается изменение линии излучения 21 см атома водорода в сверхсильном магнитном поле. Длина волны излучения 21 см известна с чрезвычайно высокой точностью -1420.4057517667(9) MHz. Также в последнее время был достигнут значительный прогресс в получении сверхсильных магнитных полей по отношению к характерному атомному полю (т.е. на которых происходит деформация атома водорода) в лабораторных условиях [13, 14]. Это дает надежду на то, что столь малый эффект можно будет наблюдать экспериментально в ближайшем будущем. Для иллюстрации явления магнитной фокусировки в разделе приведено приближенное аналитическое решение задачи о вычислении поправки к линии 21 см атома водорода. Данные результаты опубликованы в [16].

Раздел 4.3 посвящен анализу влияния магнитного поля на однопионный обмен. Однопионный обмен дает существенный вклад в энергию связи барионов, при этом его зависимость от магнитного поля менее тривиальна, чем для сверхтонкого взаимодействия. С одной стороны, матричный элемент содержит множитель $|\Psi(0)|^2$, а с другой - пропагаторы π^+ , π^- и π^0 мезонов. Так как система находится в сверхсильном магнитном поле, то массы π мезонов, входящие в знаменатель, также зависят от магнитного поля. Значения масс для π^+ и π^- были вычислены в [17], π^0 мезона в [18]. После непосредственного вычисления матричного элемента становится очевидно, что основой вклад в пионный обмен дает самое легкое состояние, т.е. обмен π^0 мезоном.

В заключительной, 5-й главе приводится сравнительный анализ полученных спектров с учетом всех пертурбативных поправок, качественный анализ поведения траекторий масс мезонов и барионов в магнитном поле и сравнение с решеточными расчетами [69, 5]. Качественное поведение таково, что основную роль в классификации траекторий играют проекции спина и изоспина на направление магнитного поля. Для каждого адрона имеется основное состояние, масса которого убывает при полях порядка $eB \sim \sigma$ и входит в насыщение с дальнейшим увеличением поля - оно характеризуется тем, что система "садится на нулевую моду", то есть непертурбативный вклад в энергию от уровней Ландау компенсируется энергией магнитных моментов кварков в магнитном поле при определенной ориентации спинов, а пертурбативные поправки входят в насыщение по причинам, рассмотренным в предыдущих разделах. Остальные спин-изоспиновые проекции демонстрируют рост в магнитном поле с асимптотикой $\sim \sqrt{eB}$ за счет роста динамической массы (непертурбативной части)[17]. Сравнение с решеточными расчетами для мезонов показывает хорошее согласие использованной техники и приближений в диапазоне полей, доступных на данный момент для анализа на решетке ($< 2.5 \ GeV^2$) [20]. На текущий момент решеточных расчетов для нейтрона в магнитном поле не сделано, поэтому для него приводятся лишь теоретические предсказания [19]. Также в заключительной главе дается ссылка на приложение А, в котором рассматривается смешивание состояний с различным спином и изоспином для систем трех частиц в слабом магнитном поле. Дело в том, что метод псевдоимпульса позволяет вычислить динамическую массу только для нейтральных систем 3-х частиц при условии, что два тождественных кварка имеют сонаправленные спины, в то время как в слабом магнитном поле имеет место смешивание различных спинизоспиновых состояний аналогично эффекту Зеемана. В случае нейтрона данное смешивание особенно наглядно, и поэтому необходимо делать сшивку массового спектра при переходе от малых полей к большим.

В приложении А приводятся формулы для Зеемановского смешивания состояний с различным спином в слабом магнитном поле. Результаты, приведенные в приложении, непосредственно используются в заключительной главе 5.

Глава 2

Обзор метода полевых корреляторов

В последнее время в фундаментальной физике в сильных магнитных полях был достигнут существенный прогресс. Сверхсильным магнитным полем будем называть такое поле, которое оказывает существенное влияние на структуру ядерной материи, то есть порядка $eB_{ui} \sim m_{\pi}^2 \sim 10^{18}$ Гаусс [21]. Подобные поля могут непосредственно влиять на свойства адронов. До недавнего времени, единственными источниками сильного магнитного поля в природе были магнетары(нейтронные звезды, обладающие магнитным полем)[1], но их поле на четыре порядка слабее B_{ui} . В настоящее время поле порядка и даже сильнее B_{ui} может быть достигнуто в столкновениях тяжелых ионов в экспериментах на LHC и RHIC [2, 3]. Аналогичная ситуация наблюдается в атомных системах, роль характерного поля в которых играет атомное магнитное поле $B_a = m^2 e^3 = 2.35 \cdot 10^8$ Гаусс. Сверхмощные лазеры также являются одним из перспективных направлений в достижении Швингеровского критического поля [4], на данный момент с помощью этих установок получается создавать поля на два порядка меньше Швингеровского. В теоретической физике явлений в сверхсильных магнитных полях существует множество направлений. Наиболее близкие к тематике данного исследования направления исследование атомных систем, таких, как атом Водорода и позитроний в сверхсильных магнитных полях [7]-[11] и исследование возможности перестройки вакуума посредством конденсации векторных мезонов под влиянием магнитного поля [23] - [26]. В данной работе ставится задача исследования из первых принципов массовых спектров двух- и трехкварковых систем(мезонов и барионов) в постоянном и однородном внешнем магнитном поле. Для проведения данного исследования был выбран формализм функций Грина в представлении Фейнмана-Фока-Швингера, подробно рассмотренный в [27, 28]. Альтернативным подходом мог бы служить подход, аналогичный уравнению Бете-Солпитера. Однако в случае, когда ведущую роль играют непертурбативные эффекты, такие как конфайнмент, данный формализм является неприменимым. Многочисленные попытки продвижения в этом направлении сталкивались с проблемой зависимости от калибровки глюонного пропагатора, в то время как конфайнмент, будучи выраженным через площадь Вильсоновской петли, является скалярной калибровочно инвариантной величиной. Представление Фейнмана-Фока-Швингера функции Грина основывается на интеграле по путям, и в нем калибровочно инвариантные Вильсоновские петли возникают естественным образом. Ранее, в работах [29]-[32], была рассмотрена аналогичная задача о массовых спектрах мезонов в отсутствие магнитного поля и были посчитаны массовые спектры ряда мезонов с достаточно хорошей точностью [33]-[39].

Начнем с простейшего примера - записи функции Грина для скалярной частицы в представлении Фейнмана-Фока -Швингера

$$[m^{2} + D^{2}]G(x, y) = -i\delta(x - y), \qquad (2.1)$$

где G - скалярный пропагатор, $x = x_{\mu}$. Пропагатор можно переписать в виде

$$HG = -i\delta(x - y); \ H = (p_{\mu} + ieA_{\mu})^2 + m^2,$$
(2.2)

далее вводится новый вспомогательный пропагатор Q

$$G(x,y) = \int_0^\infty ds Q(x,y,s), \qquad (2.3)$$

который удовлетворяет уравнению Шредингера в пространстве R^4 с соответствующими граничными условиями

$$i\frac{\partial Q}{\partial s} = HQ, \qquad (2.4)$$

$$Q|_{s=0} = -i\delta(x-y), \ Q|_{s=\infty} = 0.$$
 (2.5)

Данная система - не что иное, как определение Фейнмановского интеграла по путям в пространстве R^4 . Таким образом, пропагатор квантовой теории поля в 3+1 измерениях может рассматриваться как квантовомеханический интеграл по путям в 4+1 измерении. Запишем пропагатор Q через интеграл по путям

$$Q(x, y, s) = \langle y | e^{-iHs} | x \rangle = \int \mathcal{D}e^{i\int_0^s d\tau L},$$
(2.6)

где $L = p \frac{\mathrm{d}x}{\mathrm{d}\tau} - H$ Соответствующий лагранжиан, гамильтониан и канонический импульс равны

$$L = \frac{1}{4} \left(\frac{\mathrm{d}x_{\mu}}{\mathrm{d}\tau}\right)^2 - ie\left(\frac{\mathrm{d}x_{\mu}}{\mathrm{d}\tau}\right) A_{\mu} - m^2, \qquad (2.7)$$

$$P_{\mu} = \frac{\partial L}{\partial \frac{\mathrm{d}x_{\mu}}{\mathrm{d}\tau}} = \frac{1}{2} \left(\frac{\mathrm{d}x_{\mu}}{\mathrm{d}\tau} \right) - ieA_{\mu}, \qquad (2.8)$$

$$H = p_{\mu} \frac{\mathrm{d}x_{\mu}}{\mathrm{d}\tau} - L = (p_{\mu} + ieA_{\mu})^2 + m^2.$$
(2.9)

Далее рассмотрим более сложный пример - двухчастичную функцию Грина нейтрального мезона в КХД+КЭД. В данном случае у кваждого кварка появляется свой параметр, "собственное время" s_i , параметризующий мировую линию $z_{\mu}^{(i)}(s_i)$. Глюонные поля далее будут обозначаться как A_{μ} , а электромагнитные(далее всюду рассматривается постоянное и однородное внешнее магнитное поле) как $A_{\mu}^{(e)}$. В данных обозначениях пропагатор одного кврка запишется следующим образом

$$S_i(x,y) = (m_i + \hat{\partial} - ig\hat{A} - ie_i\hat{A}^{(e)})_{xy}^{-1} \equiv (m_i + \hat{D}^{(i)})_{xy}^{-1}.$$
 (2.10)

В представлении интеграла по путям

$$S_i(x,y) = (m_i - \hat{D}^{(i)}) \int_0^\infty ds_i (Dz)_{xy} e^{-K_i} \Phi_\sigma^{(i)}(x,y) \equiv (m_i - \hat{D}^{(i)}) G_i(x,y), \quad (2.11)$$

где

$$K_{i} = m_{i}^{2} s_{i} + \frac{1}{4} \int_{0}^{s_{i}} d\tau_{i} \left(\frac{dz_{\mu}^{(i)}}{d\tau_{i}}\right)^{2}, \qquad (2.12)$$

$$\Phi_{\sigma}^{(i)}(x,y) = P_A P_F \exp\left(ig \int_y^x A_{\mu} dz_{\mu}^{(i)} + ie_i \int_y^x A_{\mu}^{(e)} dz_{\mu}^{(i)}\right) \times \\ \times \exp\left(\int_0^{s_i} d\tau_i \sigma_{\mu\nu} (gF_{\mu\nu} + e_i B_{\mu\nu})\right), \quad (2.13)$$

где $F_{\mu\nu}$ и $B_{\mu\nu}$ - глюонный и электромагнитный тензоры соответственно, P_A, P_F операторы упорядочивания по пути, $\sigma_{\mu\nu} = \frac{1}{4i}(\gamma_{\mu}\gamma_{\nu} - \gamma_{\nu}\gamma_{\mu})$. Аналогичным образом получается пропагатор для антикварка. Запишем свертки электромагнитного и глюонного тензоров в явном виде

$$\sigma_{\mu\nu}F_{\mu\nu} = \begin{pmatrix} \boldsymbol{\sigma}\mathbf{H} & \boldsymbol{\sigma}\mathbf{E} \\ \boldsymbol{\sigma}\mathbf{E} & \boldsymbol{\sigma}\mathbf{H} \end{pmatrix}, \quad \sigma_{\mu\nu}B_{\mu\nu} = \begin{pmatrix} \boldsymbol{\sigma}\mathbf{B} & 0 \\ 0 & \boldsymbol{\sigma}\mathbf{B} \end{pmatrix}.$$
 (2.14)

Далее, перейдем к непосредстенному рассмотрению системы кварк-антикварк, то есть к нейтральному мезону. Будем считать, что мезон $q_1\bar{q}_2$ рождается в точке x пространства-времени током $j_{\Gamma_1}(x) = \bar{q}_1(x)\Gamma_1q_2(x)$ и уничтожается в точке yдругим током $j_{\Gamma_2}(y)$, где Γ_i - некоторая γ -матрица. Применяя неабелеву теорему Стокса и кластерное разложение (подробное описание этой техники дано в [33]), можно записать

$$G_{q_1\bar{q}_2}(x,y) = \int_0^\infty ds_1 \int_0^\infty ds_2 (Dz^{(1)})_{xy} (Dz^{(2)})_{xy} \langle \hat{T}W_\sigma(A) \rangle_A \times \\ \times \exp(ie_1 \int_y^x A_\mu^{(e)} dz_\mu^{(1)} - ie_2 \int_y^x A_\mu^{(e)} dz_\mu^{(2)} + e_1 \int_0^{s_1} d\tau_1(\boldsymbol{\sigma}\mathbf{B}) - e_2 \int_0^{s_2} d\tau_2(\boldsymbol{\sigma}\mathbf{B})),$$
(2.15)

где

$$\hat{T} = tr(\Gamma_1(m_1 - \hat{D}_1)\Gamma_2(m_2 - \hat{D}_2)), \qquad (2.16)$$

и $\Gamma_1 = \gamma_\mu$, $\Gamma_2 = \gamma_\nu$ для векторных токов. Множитель

$$\langle W_{\sigma}(A) \rangle_{A} = \exp\left(-\frac{g^{2}}{2} \int d\pi_{\mu\nu}(1) d\pi_{\lambda\sigma}(2) \langle F_{\mu\nu}(1)F_{\lambda\sigma}(2) \rangle\right), \qquad (2.17)$$

где $d\pi_{\mu\nu} \equiv ds_{\mu\nu} + \sigma_{\mu\nu}^{(1)} d\tau_1 - \sigma_{\mu\nu}^{(2)} d\tau_2$, и $ds_{\mu\nu}$ - элемент поверхности минимальной площади, который может быть построен с помощью прямых линий, соединяющих точки $z_{\mu}^{(1)}(t)$ и $z_{\nu}^{(2)}(t)$ на путях кварков q_1 и \bar{q}_2 в один и тот же момент времени t [27, 28, 30].

В результате функция Грина системы кварк-антикварк была записана в форме интеграла по путям в Евклидовом пространстве R^4 . Кроме того, интегрирование также производится и по совбстенным временам s_i . На следующем этапе вводится монотонное Евклидово время $t_E(\tau) = x_4 + \frac{\tau}{s}T$, где $T = |x_4 - y_4|$. Таким образом $z_4(\tau) = t_E(\tau) + \Delta z_4(\tau)$, где $\Delta z_4(\tau)$ - флуктуации траектории во времени вокруг монотонного времени t_E . Данная новая переменная t_E служит параметром упорядочивания траекторий $\mathbf{z}^{(i)}(t_E)$, а собственные времена кварков s_i преобразуются в физические параметры - динамические массы кварков $\omega_i = \frac{T}{2s_i}$, таким образом, что $ds_i = -\frac{T}{2\omega_i^2} d\omega_i$.

Далее, объединяя глюонные и электромагнитные поля в единую калибровочно инвариантную Вильсоновскую петлю $W(A, A^{(e)})$, функцию Грина можно переписать следующим образом

$$G_{q1,\bar{q}_2}(x,y) = \frac{T}{8\pi} \int_0^\infty \frac{d\omega_1}{\omega_1^{3/2}} \frac{d\omega_2}{\omega_2^{3/2}} (D^3 z^{(1)} D^3 z^{(2)})_{\mathbf{x}\mathbf{y}} e^{-K_1(\omega_1) - K_2(\omega_2)} \langle \langle \hat{T}W_F \rangle \rangle_{\Delta t_4}$$
(2.18)

подробный вывод данной формулы приведен в [29]. Функции $K_1(\omega_1)$ и $K_2(\omega_2)$ получаются из введенных ранее функций заменой $\frac{dz_i}{d\tau_i} = 2\omega_i \frac{dz_i}{dt_E}$,

$$K_{1}(\omega_{1}) + K_{2}(\omega_{2}) = \left(\frac{m_{1}^{2} + \omega_{1}^{2}}{2\omega_{1}} + \frac{m_{2}^{2} + \omega_{2}^{2}}{2\omega_{2}}\right)T + \int_{0}^{T} dt_{E} \left[\frac{\omega_{1}}{2} \left(\frac{\mathrm{d}\mathbf{z}^{(1)}}{\mathrm{d}t_{e}}\right)^{2} + \frac{\omega_{2}}{2} \left(\frac{\mathrm{d}\mathbf{z}^{(2)}}{\mathrm{d}t_{e}}\right)^{2}\right]$$
(2.19)

Заключительным этапом является усреднение Вильсоновской петли (2.17) по вакуумному хаотическому глюонному полю. Как показано в [33, 34, 35, 40], коррелятор четвертого порядка в (2.17) выражается через две скалярные функции D(z) и $D_1(z)$. Первая отвечает за конфайнмент, а вторая - за одноглюонный обмен(цветовой Кулон). После преобразований получим выражение

$$\langle W_{\sigma}(A) \rangle_{A}^{SI} = exp\left(-\int_{0}^{T} \left[\sigma |\mathbf{z}^{(1)} - \mathbf{z}^{(2)}| - \frac{4}{3} \frac{\alpha_{s}}{|\mathbf{z}^{(1)} - \mathbf{z}^{(2)}|}\right]\right),$$
 (2.20)

содержащащее потенциалы конфайнмента и одноглю
онного обмена $V_{conf} = \sigma r$ и $V_{OGE} = -\frac{4\alpha_s}{3r}$ соответственно. Параметр $\sigma = 0.18~GeV^2$ - натяжение глюонной струны.

Далее нужно получить релятивистский гамильтониан мезона. Определем Евклидово действие системы, для этого запишем $\frac{dz^{(i)}}{d\tau_i} = 2\omega_i \frac{dz_k^{(i)}}{dt_E} = 2\omega_i \dot{z}_k, \ k = 1, 2, 3,$ и перепишем все слагаемые в экспонентах (2.18) и (2.20) в Евклидовом пространстве

$$G_{q_{1,\bar{q}_{2}}}(x,y) = \frac{T}{8\pi} \int_{0}^{\infty} \frac{d\omega_{1}}{\omega_{1}^{3/2}} \frac{d\omega_{2}}{\omega_{2}^{3/2}} (D^{3}z^{(1)}D^{3}z^{(2)})_{\mathbf{x}\mathbf{y}} \operatorname{tr}(e^{-S_{q_{1}\bar{q}_{2}}^{E}}\hat{T}), \qquad (2.21)$$

где Евклидово действие равно

$$S_{q_1\bar{q}_2}^E = \int_0^T dt^E \left[\sum_i \left(\frac{\omega_i}{2} (z_k^{(i)})^2 - ie_i A_k^{(e)} \dot{z}_k^{(i)} \right) + \frac{\omega_1 + \omega_2}{2} + \frac{m_1^2}{2\omega_1} + \frac{m_2^2}{2\omega_2} + e_1 \frac{\boldsymbol{\sigma}_1 \mathbf{B}}{2\omega_1} + e_2 \frac{\boldsymbol{\sigma}_2 \mathbf{B}}{2\omega_2} + \sigma |\mathbf{z}^{(1)} - \mathbf{z}^{(2)}| - \frac{4}{3} \frac{\alpha_s}{|\mathbf{z}^{(1)} - \mathbf{z}^{(2)}|} \right]$$
(2.22)

Теперь, благодаря тому, что конфайнмент записан в терминах натяжения струны, легко перейти обратно в пространство Минковского $t_e \to it_M$, $exp(-\int L^E dt_E) \to exp(i \int L^M dt_M)$ и

$$p_{k}^{(i)} = \frac{\partial L^{M}}{\partial \dot{z}_{k}^{(i)}} = \omega_{i} \dot{z}_{k}^{(i)} + e_{i} A_{k}^{(e)},$$

$$H_{q_{1}\bar{q}_{2}} = \sum_{i} \dot{z}_{k}^{(i)} p_{k}^{(i)} - L^{M} \quad (2.23)$$

Явное выражение для релятивистского гамильтониана нейтрального мезона запишется следующим образом

$$H_{q_1\bar{q}_2} = \sum_{i=1,2} \frac{(\mathbf{p}^{(i)} - e_i \mathbf{A}(\mathbf{z}^{(i)}))^2 + m_i^2 + \omega_i^2 - e_i \boldsymbol{\sigma}_i \mathbf{B}}{2\omega_i} + \sigma |\mathbf{z}^{(1)} - \mathbf{z}^{(2)}| - \frac{4}{3} \frac{\alpha_s}{|\mathbf{z}^{(1)} - \mathbf{z}^{(2)}|},$$
(2.24)

Если снова перейти к Евклидову времени, но уже в Гамильтоновом представлении, то функцию Грина можно записать следующим образом

$$G_{q_1\bar{q}_2}(y,x) = \frac{T}{8\pi} \int_0^\infty \frac{d\omega_1}{\omega_1^{3/2}} \frac{d\omega_2}{\omega_2^{3/2}} (D^3 z^{(1)} D^3 z^{(2)})_{\mathbf{x}\mathbf{y}} \langle \mathbf{y} | \operatorname{tr}(\hat{T}e^{-H_{q_1\bar{q}_2}}T) \mathbf{x} \rangle, \qquad (2.25)$$

Отделяя движение центра инерции и вставляя внутрь интеграла по путям оператор полноты по собственным функциям гамильтониана, получим

$$\int G_{q_1\bar{q}_2}(y,x)d^3(x-y) = \frac{T}{8\pi} \int_0^\infty \frac{d\omega_1}{\omega_1^{3/2}} \frac{d\omega_2}{\omega_2^{3/2}} \sum_{n=0}^\infty \varphi_n^2(0) \langle \operatorname{tr}(\hat{T}) \rangle e^{-M_n(\omega_1,\omega_2)T)}, \quad (2.26)$$

где M_n и φ_n - собственные значения и собственные функции гамильтониана (2.24) соответственно. Если мы интересуемся основным состоянием системы, то есть стремим $T \to \infty$, то данный интеграл по ω_1 , ω_2 можно вычислить методом стационарной точки. Таким образом, динамические массы кварков ω_1 , ω_2 могут быть найдены путем минимизации динамической массы мезона $M_n(\omega_1, \omega_2)$ по ω_1, ω_2 . Таким образом, процедура исследования релятивистского пропагатора мезона $G_{q_1\bar{q}_2}$ с помощью метода корреляторов сводится к изучению спектра релятивистского гамильтониана H, с последующей минимизацией по динамическим массам кварков

$$\hat{H}\psi_n = M_n(\omega_1, \ \omega_2)\psi_n, \ \frac{\partial M_n}{\partial \omega_i} = 0.$$
 (2.27)

В заключение обзора приведем вычисление энергии релятивистской частицы в магнитном поле. Ее релятивистский гамильтониан запишется следующим образом

$$M(\omega) = \frac{p_z^2 + m_q^2 + |eB|(2n+1) - eB\sigma_z}{2\omega} + \frac{\omega}{2}.$$
 (2.28)

После минимизации по ω получаем правильный ответ

$$\bar{M}_n = (p_z^2 + m_q^2 + |eB|(2n+1) - eB\sigma_z)^{1/2}.$$
(2.29)

Помимо рассмотренных выше непертурбативных вкладов в массовый спектр адрона, W_F в (2.18) включает в себя пертурбативные эффекты. Как было показано в [33]-[39], наибольший вклад вносят собственная энергия, одноглюонный обмен и спин-спиновое взаимодействие, которые будут рассмотрены в соответствующих разделах. В случае барионов, также необходимо рассматривать однопионный обмен. Данные поправки к динамической массе адронов будут в дальнейшем вычисляться с помощью теории возмущений. Итоговое выражение для массового спектра мезона(для бариона выражение аналогично и приведено в разделе 3.2) следующее

$$M = M_0 + \Delta M_{OGE} + \Delta M_{SE} + \langle a_{SS} \rangle, \qquad (2.30)$$

где M_0 - динамическая масса основного состояния, вычисленная с помощью процедуры (2.27), $\Delta M_{OGE} = \langle \psi_0 | V_{OGE} | \psi_0 \rangle$, $\langle a_{SS} \rangle = \langle \psi_0 | V_{SS} | \psi_0 \rangle$, а ΔM_{SE} задается следующим выражением [40]

$$\Delta M_{SE} = -\frac{3\sigma}{4\pi\omega_1} \left(1 + \eta \left(\lambda \sqrt{2eB + m_1^2} \right) \right) - \frac{3\sigma}{4\pi\omega_2} \left(1 + \eta \left(\lambda \sqrt{2eB + m_2^2} \right) \right)$$
$$\eta(t) = t \int_0^\infty z^2 K_1(tz) e^{-z} dz, \quad (2.31)$$

где $\lambda \sim 1 \; GeV^{-1}$ - характерная корреляционная длина вакуумного фонового глю-онного поля. Спин-спиновый потенциал, в свою очередь, задается выражением

$$V_{SS} = \frac{8\pi\alpha_s}{9\omega_1\omega_2}\delta^{(3)}(\mathbf{r})\boldsymbol{\sigma}_1\boldsymbol{\sigma}_2$$
(2.32)

Эффекты, связанные с пертурбативными поправками, будут подробно рассмотрены в Главе 3.

Глава 3

Релятивистские гамильтонианы адронов и барионов. Псевдоимпульс и разделение переменных.

В предыдущей главе, основываясь на работах [33]-[35], [40] было показано, каким образом исследование свойств функции Грина нескольких кварков можно свести к задаче о спектре релятивистского гамильтониана. В данном разделе основное внимание будет уделено гамильтонианам нейтральных мезонов и барионов. В конце будет рассмотрена модель заряженного мезона с равными зарядами($q_1 = q_2$), позволяющая сделать оценочные вычисления не прибегая к аппарату теории возмущений. Нейтральные системы интересны прежде всего тем, что для них существует интеграл движения - псевдоимпульс, позволяющий эффективно разделить внутренние степени свободы и движение центра инерции, что позволяет упростить вычисление спектра. Существование псевдоимпульса видно даже в классической физике на примере двух взаимодействующих частиц с противоположным знаком, помещенных в постоянное и однородное магнитное поле (для простоты рассмотрен случай $m_1 = m_2$)

$$m\frac{\mathrm{d}^2\mathbf{x}_1}{\mathrm{d}t^2} = f_{12} + q\frac{\mathrm{d}\mathbf{x}_1}{\mathrm{d}t} \times \mathbf{B}$$
(3.1)

$$m\frac{\mathrm{d}^2\mathbf{x}_2}{\mathrm{d}t^2} = -f_{12} - q\frac{\mathrm{d}\mathbf{x}_2}{\mathrm{d}t} \times \mathbf{B},\tag{3.2}$$

где f_{12} - сила парного взаимодействия. Переходя в систему центра инерции получим

$$\mathbf{R} = \frac{m_1 \mathbf{x}_1 + m_2 \mathbf{x}_2}{m_1 + m_2} = \frac{\mathbf{x}_1 + \mathbf{x}_2}{2}; \ \boldsymbol{\eta} = \mathbf{x}_1 - \mathbf{x}_2$$
(3.3)

$$M = m_1 + m_2 = 2m; \ \mu = \frac{m_1 m_2}{m_1 + m_2} = \frac{m}{2}$$
(3.4)

После преобразования уравнения движения выглядят следующим образом

$$\frac{\mathrm{d}}{\mathrm{d}t} \left(2m \frac{\mathrm{d}\mathbf{R}}{\mathrm{d}t} - q\boldsymbol{\eta} \times \mathbf{B} \right) = 0 \tag{3.5}$$

$$\frac{\mathrm{d}}{\mathrm{d}t} \left(\frac{m}{2} \frac{\mathrm{d}\boldsymbol{\eta}}{\mathrm{d}t} - q\mathbf{R} \times \mathbf{B} \right) = f_{12} \tag{3.6}$$

Как и следовало ожидать, интеграл движения I - псевдоимпульс сохраняется.

$$\mathbf{I} = M \frac{\mathrm{d}\mathbf{R}}{\mathrm{d}t} - q\boldsymbol{\eta} \times \mathbf{B}; \ \frac{\mathrm{d}\mathbf{I}}{\mathrm{d}t} = 0$$
(3.7)

В следующих раздеделах будет рассмотрена аналогичная квантовомеханическая задача для двух и трех частиц.

3.1 Нейтральный мезон

Для иллюстрации техники разделения переменных вначале рассмотрим квантовомеханическую задачу о двух противоположно заряженных частицах с парным взаимодействием, помещенных в постоянное и однородное магнитное поле [49] -[52], [53]. Рассмотрим гамильтониан нейтральной системы в магнитном поле

$$H = \frac{1}{2m_1}(\hat{\mathbf{p}}_1 - q\mathbf{A}(\mathbf{x}_1))^2 + \frac{1}{2m_2}(\hat{\mathbf{p}}_2 + q\mathbf{A}(\mathbf{x}_2))^2 + V(\mathbf{x}_1 - \mathbf{x}_2)$$
(3.8)

Введем координаты центра инерции и соответствующие канонически сопряженные импульсы

$$\mathbf{R} = \frac{m_1 \mathbf{x}_1 + m_2 \mathbf{x}_2}{m_1 + m_2}; \ \boldsymbol{\eta} = \mathbf{x}_1 - \mathbf{x}_2; \tag{3.9}$$

$$M = m_1 + m_2; \ \mu = \frac{m_1 m_2}{m_1 + m_2}; \ s = \frac{m_1 - m_2}{m_1 + m_2}; \tag{3.10}$$

$$\hat{\mathbf{p}}_1 = -i\frac{\partial}{\partial \mathbf{x}_1} = -i\frac{\partial \mathbf{R}}{\partial \mathbf{x}_1}\frac{\partial}{\partial \mathbf{R}} - i\frac{\partial \boldsymbol{\eta}}{\partial \mathbf{x}_1}\frac{\partial}{\partial \boldsymbol{\eta}} = \hat{\boldsymbol{\pi}} + \frac{\mu}{m_2}\hat{\mathbf{P}}; \qquad (3.11)$$

$$\hat{\mathbf{p}}_2 = -i\frac{\partial}{\partial \mathbf{x}_2} = -i\frac{\partial \mathbf{R}}{\partial \mathbf{x}_2}\frac{\partial}{\partial \mathbf{R}} - i\frac{\partial \boldsymbol{\eta}}{\partial \mathbf{x}_2}\frac{\partial}{\partial \boldsymbol{\eta}} = -\hat{\boldsymbol{\pi}} + \frac{\mu}{m_1}\hat{\mathbf{P}},\tag{3.12}$$

где **R** - координата центра инерции, η - координата относительного движения, M - полная масса системы, μ - приведенная масса, s - безразмерный параметр, показывающий степень различия масс частиц, $\hat{\mathbf{P}}$ и $\hat{\pi}$ - канонически сопряженные импульсы для переменных **R** и η соответственно.

На данном этапе важно заметить, что для упрощения дальнейших вычислений было принято |q| = 1. Для дальнейших преобразований вектор-потенциал в постоянном и однородном магнитном поле удобно записать в симметричной калибровке

$$\mathbf{A}(\mathbf{x}_1) = \frac{1}{2}\mathbf{B} \times \mathbf{x}_1 = \frac{1}{2}\mathbf{B} \times \mathbf{R} + \frac{\mu}{2m_1}\mathbf{B} \times \boldsymbol{\eta}$$
(3.13)

$$\mathbf{A}(\mathbf{x}_2) = \frac{1}{2}\mathbf{B} \times \mathbf{x}_2 = \frac{1}{2}\mathbf{B} \times \mathbf{R} - \frac{\mu}{2m_2}\mathbf{B} \times \boldsymbol{\eta}$$
(3.14)

После подстановки и приведения подобных слагаемых гамильтониан имеет вид

$$H = \frac{1}{2\mu} \left(\hat{\boldsymbol{\pi}} - \frac{1}{2} \mathbf{B} \times \mathbf{R} + \frac{s}{2} \mathbf{B} \times \boldsymbol{\eta} \right)^2 + \frac{1}{2M} \left(\hat{\mathbf{P}} - \frac{1}{2} \mathbf{B} \times \boldsymbol{\eta} \right)^2 + V(\boldsymbol{\eta})$$
(3.15)

Оператор псевдоимпульса имеет следующий вид

$$\hat{\mathbf{I}} = \hat{\mathbf{P}} + \frac{1}{2}\mathbf{B} \times \boldsymbol{\eta}, \qquad (3.16)$$

Тот факт, что данный оператор является интегралом движения, то есть коммутирует с гамильтонианом, легко убедиться непосредственной проверкой

$$\left[\hat{H},\hat{\mathbf{I}}\right] = 0 \tag{3.17}$$

Кроме того, компоненты вектора пседоимпульса коммутируют между собой попарно

$$\left[\hat{I}_{i},\hat{I}_{j}\right] = 0, \ i = x, y, z,$$
(3.18)

то есть компоненты псевдоимпульса существуют одновременно, в отличие от, например, операторов \hat{X} и \hat{Y} - координат ведущего центра орбиты частицы, вращающейся в однородном магнитном поле.

Как было показано выше, оператор псевдоимпульса и гамильтониан имеют общую систему собственных функций. Собственные функции псевдоимпульса имеют вид

$$\hat{\mathbf{I}}\Psi = \mathbf{P}\Psi \tag{3.19}$$

$$\Psi(\mathbf{R},\boldsymbol{\eta}) = \phi(\boldsymbol{\eta})e^{i\mathbf{PR}-i\frac{1}{2}(\mathbf{B}\times\boldsymbol{\eta})\mathbf{R}},\tag{3.20}$$

где **Р** - вектор собственных значений оператора псевдоимпульса. Данная волновая функция и есть тот анзатц, который позволяет факторизовать переменные в гамильтониане. После действия оператора гамильтониана на функцию Ψ получим стационарное уравнение Шредингера для функции ϕ

$$\hat{H}\Psi = E\Psi \qquad (3.21)$$

$$H\phi = \frac{1}{2\mu} \left(-i\frac{\partial}{\partial \eta} + \frac{s}{2}\mathbf{B} \times \eta \right)^2 \phi + \frac{1}{2M} \left(\mathbf{P} - \mathbf{B} \times \eta \right)^2 \phi + V(\eta)\phi = E\phi \qquad (3.22)$$

В итоге получено уравнение для волновой функции ϕ , зависящей только от относительных координат η , то есть переменные центра масс **R** были успешно факторизованы. В то же время, движение системы как целого влияет на относительное движение частиц через собственные значения псевдоимпульса **P**, которые входят во второе слагаемое в уравнении (3.22) и задают некоторый эффективный потенциал.

Следующий этап - найти собственные значения и собственные функции. В дальнейшем будет описано, каким образом можно заменить линейный потенциал конфайнмента между кварками осцилляторным, на данном же этапе потенциал парного взаимодействия выбирается в виде

$$V(\eta) = V(\boldsymbol{\eta}) = \sigma\beta\eta^2 + \frac{\sigma}{4\beta},$$
(3.23)

где $\beta > 0$ - некоторый параметр. Данный потенциал осцилляторного типа позволяет решить спектральную задачу точно. Для этого необходимо привести уравнение (3.22) к каноническому осцилляторному виду. Вводятся новые переменные и обозначения

$$\alpha = \frac{B^2}{2M\sigma\beta}; \ \mu\Omega^2 = 2\sigma\beta(1+\alpha); \ \mu\omega^2 = 2\sigma\beta \tag{3.24}$$

$$\eta'_x = \eta_x - \frac{\alpha}{1+\alpha} \frac{P_y}{B}; \ \eta'_y = \eta_y + \frac{\alpha}{1+\alpha} \frac{P_x}{B}; \ \eta'_z = \eta_z \tag{3.25}$$

В новых координатах уравнение, записанное покомпонентно(направление внешнего магнитного поля было выбрано вдоль оси z), выглядит следующим образом

$$H = \frac{1}{2\mu} \left(-i\frac{\partial}{\partial\eta'_x} - \frac{s}{2}B\eta'_y + \frac{s}{2}\frac{\alpha}{1+\alpha}P_x \right)^2 + \frac{1}{2\mu} \left(-i\frac{\partial}{\partial\eta'_y} + \frac{s}{2}B\eta'_x + \frac{s}{2}\frac{\alpha}{1+\alpha}P_y \right)^2 + \frac{1}{2\mu} \left(-i\frac{\partial}{\partial\eta'_z} \right)^2 + \frac{\mu\Omega^2}{2}(\eta'^2_x + \eta'^2_y) + \frac{\mu\omega^2}{2}\eta'^2_z + \frac{P^2_x + P^2_y}{2M}\frac{1}{1+\alpha} + \frac{P^2_z}{2M} + \frac{\sigma}{4\beta}$$
(3.26)

Из (3.26) следует, что при осцилляторном взаимодействии между частицами (3.23) движение вдоль направления магнитного поля(вдоль оси z) полностью независимо от движения в плоскости, перпендикулярной магнитному полю(плоскость xy). Для дальнейших вычислений следует ввести новую функцию $\tilde{\phi}$ добавив к исходному анзатцу (3.20) дополнительный множитель

$$\phi(\boldsymbol{\eta}) = \tilde{\phi}(\boldsymbol{\eta})e^{-i\frac{s}{2}\frac{\alpha}{1+\alpha}(P_x\eta'_x + P_y\eta'_y)}$$
(3.27)

После данных преобразований, уравнение Шредингера приобретает канонический осцилляторный вид

$$\frac{1}{2\mu} \left(-i\frac{\partial}{\partial\eta'_x} - \frac{s}{2}B\eta'_y \right)^2 \tilde{\phi} + \frac{1}{2\mu} \left(-i\frac{\partial}{\partial\eta'_y} + \frac{s}{2}B\eta'_x \right)^2 \tilde{\phi} + \frac{1}{2\mu} \left(-i\frac{\partial}{\partial\eta'_z} \right)^2 \tilde{\phi} + \frac{\mu\Omega^2}{2} (\eta'^2_x + \eta'^2_y) \tilde{\phi} + \frac{\mu\omega^2}{2} \eta'^2_z \tilde{\phi} = \left(E - \frac{P_x^2 + P_y^2}{2M} \frac{1}{1+\alpha} - \frac{P_z^2}{2M} - \frac{\sigma}{4\beta} \right) \tilde{\phi}$$
(3.28)

Далее, проделывая стандартную процедуру разделения переменных, получим

$$\tilde{\phi}(\boldsymbol{\eta}) = \chi(\eta_x, \eta_y)\xi(\eta_z); \ E = E_{xy} + E_z(3.29)$$

$$\frac{1}{2\mu} \left(-i\frac{\partial}{\partial \eta'_x} - \frac{s}{2}B\eta'_y \right)^2 \chi + \frac{1}{2\mu} \left(-i\frac{\partial}{\partial \eta'_y} + \frac{s}{2}B\eta'_x \right)^2 \chi + \frac{\mu\Omega^2}{2}(\eta'^2_x + \eta'^2_y)\chi = E_{xy}\chi(3.30)$$

$$\frac{1}{2\mu} \left(-i\frac{\partial}{\partial \eta'_z} \right)^2 \xi + \frac{\mu\omega^2}{2}\eta'^2_z \xi = \left(E_z - \frac{P_x^2 + P_y^2}{2M} \frac{1}{1+\alpha} - \frac{P_z^2}{2M} - \frac{\sigma}{4\beta} \right)\xi(3.31)$$

Окончательный ответ для собственных значений можно записать следующим образом

$$E = \omega_1 \left(n_1 + \frac{1}{2} \right) + \omega_2 \left(n_2 + \frac{1}{2} \right) + \omega \left(n_z + \frac{1}{2} \right) + \frac{P_x^2 + P_y^2}{2M} \frac{1}{1 + \alpha} + \frac{P_z^2}{2M} + \frac{\sigma}{4\beta} (3.32)$$
$$\omega_{1,2} = \frac{\sqrt{1 + 4\epsilon} \mp 1}{2} \omega_L; \ \omega_L = \frac{s}{2} \frac{B}{\mu}; \ \epsilon = \left(\frac{\Omega}{\omega} \right)^2; (3.33)$$
$$\alpha = \frac{B^2}{2M\sigma\beta}; \ \mu\Omega^2 = 2\sigma\beta(1 + \alpha); \ \mu\omega^2 = 2\sigma\beta; (3.34)$$

$$s = \frac{m_1 - m_2}{m_1 + m_2}; \ \mu = \frac{m_1 m_2}{m_1 + m_2}; \ M = m_1 + m_2(3.35)$$

Соответствующие волновые функции представляют собой произведения трех волновых функций для трех гармонических лецилляторов с частотами ω_1 , ω_2 и ω .

Релятивистские гамильтонианы, обзор которых приведен в Главе 2, во многом схожи с нерелятивистскими квантовомеханическими гамильтонианами. Чтобы получить редятивистский аналог задачи, нужно заменить массы частиц *m* на динамические массы ω и добавить несколько слагаемых, чтобы из формулы (3.8) получить (2.24). Далее мы рассмотрим задачу о спектре релятивистского гамильтониана мезона и найдем соответствующие собственные функции и собственные значения, не останавливаясь столь подробно на сохранении псевдоимпульса и промежуточных вычислениях.

Первым делом введем координыты центра инерции

$$\mathbf{R} = \frac{\omega_1 \mathbf{z}^{(1)} + \omega_2 \mathbf{z}^{(2)}}{\omega_1 + \omega_2}, \quad \boldsymbol{\eta} = \mathbf{z}^{(1)} - \mathbf{z}^{(2)}, \quad (3.36)$$

$$\mathbf{P} = -i\frac{\partial}{\partial \mathbf{R}}, \quad \boldsymbol{\pi} = -i\frac{\partial}{\partial \boldsymbol{\eta}}.$$
(3.37)

А также два дополнительных параметра

$$\tilde{\omega} = \frac{\omega_1 \omega_2}{\omega_1 + \omega_2}, \ s = \frac{\omega_1 - \omega_2}{\omega_1 + \omega_2} \tag{3.38}$$

Релятивистский гамильтониан (2.24) можно записать в виде суммы трех слагаемых

$$H_{q_1\bar{q}_2} = H_B + H_\sigma + W, (3.39)$$

где первое слагаемое

$$H_{B} = \frac{1}{2\omega_{1}} \left[\frac{\tilde{\omega}}{\omega_{2}} \mathbf{P} + \boldsymbol{\pi} - \frac{e}{2} \mathbf{B} \times \left(\mathbf{R} + \frac{\tilde{\omega}}{\omega_{1}} \boldsymbol{\eta} \right) \right]^{2} + \frac{1}{2\omega_{2}} \left[\frac{\tilde{\omega}}{\omega_{1}} \mathbf{P} - \boldsymbol{\pi} + \frac{e}{2} \mathbf{B} \times \left(\mathbf{R} - \frac{\tilde{\omega}}{\omega_{2}} \boldsymbol{\eta} \right) \right]^{2} = \frac{1}{2\tilde{\omega}} \left(\boldsymbol{\pi} - \frac{e}{2} \mathbf{B} \times \mathbf{R} + s\frac{e}{2} \mathbf{B} \times \boldsymbol{\eta} \right)^{2} + \frac{1}{2(\omega_{1} + \omega_{2})} \left(\mathbf{P} - \frac{e}{2} \mathbf{B} \times \boldsymbol{\eta} \right)^{2}.$$
 (3.40)

то есть H_B можно получить из нерелятивистского гамильтониана путем прямой замены $m \to \omega$. Второе слагаемое

$$H_{\boldsymbol{\sigma}} = \frac{m_1^2 + \omega_1^2 - e\boldsymbol{\sigma}_1 \mathbf{B}}{2\omega_1} + \frac{m_2^2 + \omega_2^2 + e\boldsymbol{\sigma}_2 \mathbf{B}}{2\omega_2},$$
(3.41)

содержит характерные релятивистские и спин-зависимые части. И третье слагаемое

$$W = V_{\text{conf}} + V_{\text{Coul}} + \Delta W = \sigma |\boldsymbol{\eta}| - \frac{4}{3} \frac{\alpha_s(\eta)}{\eta} + \Delta W, \qquad (3.42)$$

содержит потенциал конфайнмента V_{conf} , потенциал, одноглюонного обмена V_{Coul} , а также ΔW - слагаемое, включающее в себя собственную энергию и спин-спиновое

взаимодействие кварков. Как подчеркивалось в Главе 2, V_{Coul}, и ΔW будут рассматриваться по теории возмущений, в то время как потенциал конфайнмента непосредственно включен в динамическую задачу.

Легко проверить, что соответствующий оператор псевдоимпульса (3.16) по прежнему коммутирует с гамильтонианом (3.39), поэтому анзатц для волновой функции можно записать следующим образом

$$H_B\Psi(\mathbf{R},\boldsymbol{\eta}) = \exp\left\{i\mathbf{P}\mathbf{R} - i\frac{e}{2}(\mathbf{B}\times\boldsymbol{\eta})\mathbf{R}\right\}\tilde{H}_B\varphi(\boldsymbol{\eta}).$$
(3.43)

Как и следовало ожидать, \tilde{H}_B зависит только от "относительных" координат η и собственных значений псевдоимпульса **P**:

$$\tilde{H}_B = \frac{1}{2\tilde{\omega}} \left(-i\frac{\partial}{\partial \eta} + s\frac{e}{2}\mathbf{B} \times \boldsymbol{\eta} \right)^2 + \frac{1}{2(\omega_1 + \omega_2)} \left(\mathbf{P} - e\mathbf{B} \times \boldsymbol{\eta} \right)^2$$
(3.44)

В предыдущем квантовомеханическом примере акцентировалось внимание на том факте, что если парное взаимодействие между частицами имеет осцилляторный вид, то, во-первых, возможно точное решение задачи и, во-вторых, вклад в энергию, связанный с псевдоимпульсом, пропрционален $\sim \frac{\mathbf{P}^2}{2M}$ (см. (3.32). То есть в случае осцилляторного парного взаимодействия собственные значения оператора псевдоимпульса **P**, входящие в качестве параметров в гамильтониан (3.44) никак не влияют на энергию внутренних степеней свободы. Поэтому уже на данном этапе можно положить $\mathbf{P} = 0$, так как ставится задача найти состояние с наинизшей энергией. Также, в случае основного состояния, можно положить равным нулю zкомпоненту углового момена по относительным координатам $(\mathbf{L}_{\eta})_{z} = [\boldsymbol{\eta} \times \frac{\partial}{\partial i \boldsymbol{\eta}}]_{z} = 0$. В итоге, после сделанных упрощений, получим гамильтониан, наименьшее собственное значение которого и будет основным состоянием системы

$$H_0 = \frac{1}{2\tilde{\omega}} \left(-\frac{\partial^2}{\partial \boldsymbol{\eta}^2} + \frac{e^2}{4} (\mathbf{B} \times \boldsymbol{\eta})^2 \right), \qquad (3.45)$$

Чтобы убедиться в правильности данной формулы, положим W = 0 (невзаимодействующие кварки) и найдем основное состояние гамильтониана

$$(H_0 + H_\sigma)\varphi = M(\omega_1, \omega_2)\varphi.$$
(3.46)

После минимизации $M(\omega_1, \omega_2)$ по переменным ω_1, ω_2 получим

$$M = \sqrt{m_1^2 + eB(2n_1 + 1) - e\boldsymbol{\sigma}_1 \mathbf{B}} + \sqrt{m_2^2 + eB(2n_2 + 1) + e\boldsymbol{\sigma}_2 \mathbf{B}}.$$
 (3.47)

Данное выражение в точности воспроизводит результат классической задачи Ландау о движении заряженной частицы в магнитном поле.

Перейдем к рассмотрению третьего слагаемого W в формуле (3.39). Потенциал конфайнмента можно приближенно заменить осцилляторным с помощью следующей процедуры

$$V_{\rm conf} \to \tilde{V}_{\rm conf} = \frac{\sigma}{2} \left(\frac{\eta^2}{\gamma} + \gamma \right).$$
 (3.48)

В данном выражении γ - положительно определенный вариационный параметр. Как было проверено в ряде расчетов [36] - [39], такая замена с последующей минимизацией дает точность для собственных значений гамильтониана порядка 5%. Процедура нахождения массового спектра (2.27) дополняется еще одним условием

$$\frac{\partial M(\omega_1, \omega_2, \gamma)}{\partial \gamma} \bigg|_{\gamma = \gamma_0} = 0 \tag{3.49}$$

Теперь можно вычислить спектр мезона в магнитном поле. Для этого необходимо выполнить процедуру (2.27) для гамильтониана

$$(H_0 + H_\sigma + W)\Psi_n(\eta) = M_n(\omega_1, \omega_2, \gamma)\Psi_n(\eta)$$
(3.50)

Стоит еще раз подчеркнуть, что на динамику состояний в магнитном поле непосредственно оказывает влияние только одно слагаемое в W - конфайнмент. Остальные члены в (3.42) рассматриваются по теории возмущений. Решение задачи выглядит следующим образом

$$M_n(\omega_1, \omega_2, \gamma) = \varepsilon_{n_\perp, n_z} + \frac{m_1^2 + \omega_1^2 - e\mathbf{B}\boldsymbol{\sigma}_1}{2\omega_1} + \frac{m_2^2 + \omega_2^2 + e\mathbf{B}\boldsymbol{\sigma}_2}{2\omega_2} + \langle \Delta M_{\rm Coul} \rangle + \Delta M_{SE},$$
(3.51)

где

$$\varepsilon_{n_{\perp},n_z} = \frac{1}{2\tilde{\omega}} \left[\sqrt{e^2 B^2 + \frac{4\sigma\tilde{\omega}}{\gamma}} (2n_{\perp} + 1) + \sqrt{\frac{4\sigma\tilde{\omega}}{\gamma}} \left(n_z + \frac{1}{2} \right) \right] + \frac{\gamma\sigma}{2}, \quad (3.52)$$

Из последней формулы видно что, как и в случае квантовомеханической задачи, спектр релятивистского гамильтониана есть сумма спектров трех гармонических осцилляторов и магнитных энергий спинов плюс специфические релятивистские слагаемые. Однако, в отличие от нерелятивизма, динамические массы ω не являются фиксированными и изменяются динамически под влиянием внешних параметров. К сожалению, записать ответ для минимума выражения (3.51) невозможно. Однако понятно, что в ходе минимизации динамических масс кварков появляются нелинейные связи между данной совокупностью гармонических осцилляторов и магнитных энергий в (3.51). Следующий шаг - это численное нахождение стационарной точки для динамических масс ω_1 , ω_2 и вариационного параметра γ . Результат данного вычисления, а также вклад пертурбативных поправок в массовый спектр приведены в заключительной Главе 5.

На данном этапе стоит сказать несколько слов по поводу собственно-энергетической поправки. Как было показано в [41], данная поправка вносит достаточно существенный вклад в массу порядка 15%. Однако, данный подход успешно использовался для вычисления массы многих мезонов и барионов, а также траекторий Редже [36, 37, 38, 39, 42]. Выражение для собственно-энергетических поправок для двух кварков в мезоне может быть записано следующим образом

$$\Delta M_{SE} = -\frac{3\sqrt{\sigma}}{4\pi a} \left[1 + \eta (\lambda \sqrt{eB + m_1^2}) \right] - \frac{3\sqrt{\sigma}}{4\pi a_3} \left[1 + \eta (\lambda \sqrt{2eB + m_3^2}) \right], \quad (3.53)$$

где

$$\eta(t) = t \int_0^\infty z^2 K_1(tz) e^{-z} dz.$$
(3.54)

И последнее, чему нужно уделить внимание - вычислению волновой функции мезона в сильном магнитном поле. Явный вид волновой функции необходим для вычисления пертурбативных поправок, а также для иллюстрации того, как сверхсильное магнитное поле деформирует адрон. Волновая функция основного состояния есть собственная функция оператора

$$(H_0 + \tilde{V}_{\text{conf}})\varphi = M(\omega_1, \omega_2, \gamma_0)\varphi$$
(3.55)

Собстенная функция равна

$$\psi(\boldsymbol{\eta}) = \frac{1}{\sqrt{\pi^{3/2} r_{\perp}^2 r_0}} \exp\left(-\frac{\eta_{\perp}^2}{2r_{\perp}^2} - \frac{\eta_z^2}{2r_0^2}\right),\tag{3.56}$$

где

$$r_{\perp} = \sqrt{\frac{2}{eB}} \left(1 + \frac{4\sigma\tilde{\omega}}{\gamma e^2 B^2} \right)^{-1/4}, \qquad (3.57)$$

$$r_0 = \left(\frac{\gamma}{\sigma\tilde{\omega}}\right)^{1/4}.$$
(3.58)

Параметры r_{\perp} и r_0 - это среднеквадратичные радиусы эллипсоида вращения, который образует вытянувшийся вдоль магнитного поля мезон. Такого же типа деформацию испытывают и атомные системы, например атом водорода или позитрония, помещенные в сильное магнитное поле [7]-[11]. Проблема деформации атома водорода в магнитном поле подробно рассмотрена в пункте 4.2. При $B \to \infty r_{\perp}$ и r_0 имеют следующие асимптотики: $r_{\perp} \approx \frac{1}{\sqrt{eB}}$, $r_0 \approx \frac{1}{\sqrt{\sigma}}$. Из данных соотношений видно, что в динамике системы вдоль направления магнитного поля определяющую роль играет конфайнмент - система имеет характерный размер $\sim 1/\sqrt{\sigma}$, в то время как в плоскости, перепендикулярной магнитному полю, система ведет себя как две невзаимодействующие частицы, помещенные в магнитное поле, так как характерный размер системы пропорционален Ларморовскому радиусу $\approx \frac{1}{\sqrt{eB}}$. Отсюда можно сделать вывод, что при асимптотически больших магнитных полях роли магнитного поля и конфайнмента разделяются - движение в напралении магнитного поля определяется конфайнментом, а движение в плоскости, перепендикулярной магнитному полю - магнитным полем. Таким образом, система становится квазиодномерной, аналогично атому водорода в [11].

3.2 Нейтральный барион

Задача о нейтральном барионе во многом аналогична рассмотренной выше задаче о нейтральном мезоне. Полный гамильтониан бариона, полученный с помощью метода вакуумных корреляторов, выглядит следующим образом

$$H^{(B)} = H_0 + V_{\sigma} + V_{OGE} + \Delta_{SE} + \Delta_{string} + \Delta_{SD}, \qquad (3.59)$$

где H_0 - динамическая часть гамильтониана, V_{OGE} - потенциал одноглю
онного обмена, Δ_{SE} - собственно-энергетическая поправка, а

$$V_{\sigma} = -\sum_{i=1}^{3} \frac{e_i \boldsymbol{\sigma}^{(i)} \mathbf{B}}{2\omega_i}, \quad V_{\text{conf}} = \sigma \sum_{i=1}^{3} |\mathbf{z}^{(i)} - \mathbf{z}_Y|, \quad (3.60)$$

$$\Delta V_{\text{string}} = -\sum \frac{l_i^2 \sigma \langle r_i^{-1} \rangle}{2 \langle \sigma r_i \rangle (\omega_i + \frac{1}{3} \langle \sigma r_i \rangle)}, \quad r_i = |\mathbf{z}_i - \mathbf{z}_Y|, \quad (3.61)$$

$$\Delta_{SD} = \Delta_{ss}^{\text{pert}} + \Delta_{ss}^{\text{nonp}} + \Delta_{SO}^{\text{pert}} + \Delta_{SO}^{\text{nonp}}, \qquad (3.62)$$

где ΔV_{string} - поправка к натяжению струны, а Δ_{SD} - зависиящие от спина пертурбативные и непертурбативные поправки (индексы SS и SO означают спинспиновое и спин-орбитальное взаимодействие соответственно). Пертурбативная поправка, дающая сверхтонкое взаимодействие, равна

$$\Delta_{ss}^{\text{pert}} = \sum_{i < j} \frac{\boldsymbol{\sigma}^{(i)} \boldsymbol{\sigma}^{(j)} V_4(r_{ij}) + [3(\boldsymbol{\sigma}^{(i)} \mathbf{n})(\boldsymbol{\sigma}^{(j)} \mathbf{n}) - \boldsymbol{\sigma}^{(i)} \boldsymbol{\sigma}^{(j)}] V_3(r_{ij})}{24\omega_i \omega_j}, \quad (3.63)$$

$$V_4(r) = \frac{32\pi\alpha_s}{3}\delta^{(3)}(\mathbf{r}), \ V_3(r) = \frac{4\alpha_s}{r^3}.$$
 (3.64)

В дальнейшем тензоное взаимодействие V_3 рассматриваться не будет, так как оказывает существенное влияние только в очень сильном поле $eB \gg \sigma \simeq 10^{19}$ G. Непертурбативная поправка $\Delta_{ss}^{\text{nonp}}$ гораздо меньше $\Delta_{ss}^{\text{pert}}$, поэтому тоже может быть исключена. Так как в дальнейшем нас будет интересовать основное состояние бариона, в котором, исходя из принципа минимума энергии, все угловые моменты равны нулю, спин-орбитальные поправки также могут быть исключены из рассмотрения. Подробный вывод данных поправок может быть найден в [44]. В данном разделе будет рассматриваться, как и в случае мезона, только непертурбативная динамика нейтрона. Влияние поправок будет рассмотрено в соответствующих разделах.

Рассмотрим часть гамильтониана, отвечающую динамической массе

$$H_0 = \sum_{i=1}^3 \frac{(p_k^{(i)} - e_i A_k)^2 + m_i^2 + \omega_i^2}{2\omega_i} + \sigma \sum_{i=1}^3 |\mathbf{z}^{(i)} - \mathbf{z}_Y|, \qquad (3.65)$$

где **z**_Y - точка ветвления струны. Из соображений минимальности полной энергии системы точка ветвления совпадает с точкой Торричелли для треугольника, в вершинах которого помещены кварки.

Так как факторизация движения центра инерции возможна только для нейтральных барионов [49]-[53], в дальнейшем будет рассматриваться нейтрон, то есть конфигурация из двух d кварков и одного u кварка. На данном этапе можно предположить, что u кварки, обладая одинаковым электрическом зарядом, будут иметь в магнитном поле одинаковые динамические энергии $\omega_1 = \omega_2$ - данное условие является необходимым для отделения движения центра инерции с помощью псевдоимпульса в трехчастичной системе. Это возможно только в том случае, если спины d кварков имеют одинаковую ориентацию. Как будет ясно в дальнейшем данные конфигурации спинов $|+--\rangle$ и $|-++\rangle$ (в порядке *udd*) отвечают состояниям с наибольшей и наименьшей энергиями соответственно при асимптотически большом магнитном поле *B*. Также воодятся новые обозначения

$$\omega_1 = \omega_2 = \omega; \ \omega_u = \omega_3; \ e_3 = e; \ e_1 = e_2 = -e/2; \ \omega_+ = 2\omega + \omega_3. \tag{3.66}$$

Для факторизвции удобно ввести координаты Якоби

$$\begin{cases} R_k = \frac{1}{\omega_+} \sum_{k=1}^{\infty} \omega_i z_k^{(i)}, \\ \eta_k = \frac{z_k^{(2)} - z_k^{(1)}}{\sqrt{2}}, \\ \xi_k = \sqrt{\frac{\omega_3}{2\omega_+}} (z_k^{(1)} + z_k^{(2)} - 2z_k^{(3)}). \end{cases}$$
(3.67)

и сответствующие им канонически сопряженные импульсы

$$\mathcal{P}_k \equiv \frac{\partial}{i\partial R_k}, \quad q_k \equiv \frac{\partial}{i\partial \xi_k}, \quad \pi_k \equiv \frac{\partial}{i\partial \eta_k},$$
 (3.68)

которые выражаются через декартовы координаты следующим образом

$$p_k^{(1)} = \frac{\omega}{\omega_+} \mathcal{P}_k + \sqrt{\frac{\omega_3}{2\omega_+}} q_k - \frac{1}{\sqrt{2}} \pi_k \tag{3.69}$$

$$p_k^{(2)} = \frac{\omega}{\omega_+} \mathcal{P}_k + \sqrt{\frac{\omega_3}{2\omega_+}} q_k + \frac{1}{\sqrt{2}} \pi_k \tag{3.70}$$

$$p_k^{(3)} = \frac{\omega_3}{\omega_+} \mathcal{P}_k - \sqrt{\frac{2\omega_3}{\omega_+}} q_k \tag{3.71}$$

Трехчастичный релятивистский гамильтониан впервые был рассмотрен в работах [46, 47, 48]. Релятивистский гамильтониан для нейтральной системы из трех кварков в координатах Якоби выглядит следующим образом

$$H_0 = \frac{1}{2\omega_+} \mathbf{P}^2 + \frac{1}{2\omega} \pi^2 + \frac{1}{2\omega} \mathbf{q}^2 + \sum_{i=1}^3 \frac{m_i^2 + \omega_i^2}{2\omega_i}.$$
 (3.72)

Теперь рассмотрим гамильтониан нейтрона (3.65) в координатах Якоби, предварительно зафиксировав симметрическую калибровку $\mathbf{A}^{(i)} = \frac{1}{2} \mathbf{B} \times \mathbf{z}^{(i)}$

$$H_{0} = \frac{1}{2\omega} \left[\frac{\omega}{\omega_{+}} \mathbf{P} + \sqrt{\frac{\omega_{3}}{2\omega_{+}}} \mathbf{q} - \frac{\pi}{\sqrt{2}} + \frac{e}{4} \left(\mathbf{B} \times \left(\mathbf{R} + \sqrt{\frac{\omega_{3}}{2\omega_{+}}} \boldsymbol{\xi} - \frac{\boldsymbol{\eta}}{\sqrt{2}} \right) \right) \right]^{2} + \frac{1}{2\omega} \left[\frac{\omega}{\omega_{+}} \mathbf{P} + \sqrt{\frac{\omega_{3}}{2\omega_{+}}} \mathbf{q} + \frac{\pi}{\sqrt{2}} + \frac{e}{4} \left(\mathbf{B} \times \left(\mathbf{R} + \sqrt{\frac{\omega_{3}}{2\omega_{+}}} \boldsymbol{\xi} + \frac{\boldsymbol{\eta}}{\sqrt{2}} \right) \right) \right]^{2} + \frac{1}{2\omega_{3}} \left[\frac{\omega_{3}}{\omega_{+}} \mathbf{P} - \sqrt{\frac{2\omega_{3}}{\omega_{+}}} \mathbf{q} - \frac{e}{2} \left(\mathbf{B} \times \left(\mathbf{R} - \sqrt{\frac{2\omega^{2}}{\omega_{+}\omega_{3}}} \boldsymbol{\xi} \right) \right) \right]^{2} + \frac{1}{2\omega_{4}} \frac{m_{i}^{2} + \omega_{i}^{2}}{2\omega_{i}} \equiv \frac{1}{2\omega} \left((\mathbf{J}^{(1)})^{2} + (\mathbf{J}^{(2)})^{2} \right) + \frac{1}{2\omega_{3}} (\mathbf{J}^{(3)})^{2} + \sum_{i=1}^{3} \frac{m_{i}^{2} + \omega_{i}^{2}}{2\omega_{i}}.$$
 (3.73)

Сохраняющийся интеграл движения - псевдоимпульс для нейтрна выглядит следующим образом

$$\hat{\mathbf{F}} = \mathbf{P} - \frac{e}{2} \sqrt{\frac{\omega_+}{2\omega_3}} (\mathbf{B} \times \boldsymbol{\xi}).$$
(3.74)

Как и в предыдущем разделе, рассмотрим систему собственных значений ${\bf F}$ и собственных функций псевдоимпульса $\hat{\bf F}$

$$\hat{\mathbf{F}}\Psi(\mathbf{R},\boldsymbol{\xi},\boldsymbol{\eta}) = \mathbf{F}\Psi(\mathbf{R},\boldsymbol{\xi},\boldsymbol{\eta}).$$
 (3.75)

Анзатц, факторизующий движение центра инерции, запишется так

$$\Psi(\mathbf{R},\boldsymbol{\xi},\boldsymbol{\eta}) = \exp\left\{i\left[\mathbf{F} + \frac{e}{2}\sqrt{\frac{\omega_{+}}{2\omega_{3}}}(\mathbf{B}\times\boldsymbol{\xi})\right]\mathbf{R}\right\}\varphi(\boldsymbol{\xi},\boldsymbol{\eta}),\tag{3.76}$$

где функция $\varphi(\boldsymbol{\xi}, \boldsymbol{\eta})$ определяет относительное движение кварков. Действуя операторами $J_k^{(i)}$ на волновую функцию Ψ , получим

$$(\mathbf{J}^{(1)})^2 e^{i\boldsymbol{\nu}\mathbf{R}} \varphi = e^{i\boldsymbol{\nu}\mathbf{R}} \left[\sqrt{\frac{\omega_3}{2\omega_+}} \left(-i\frac{\partial}{\partial \boldsymbol{x}\boldsymbol{i}} \right) + \mathbf{C}^{(1)} \right]^2 \varphi, \qquad (3.77)$$

$$(\mathbf{J}^{(2)})^2 e^{i\boldsymbol{\nu}\mathbf{R}} \varphi = e^{i\boldsymbol{\nu}\mathbf{R}} \left[\sqrt{\frac{\omega_3}{2\omega_+}} \left(-i\frac{\partial}{\partial\boldsymbol{\xi}} \right) + \mathbf{C}^{(2)} \right]^2 \varphi, \qquad (3.78)$$

$$(\mathbf{J}^{(3)})^2 e^{i\boldsymbol{\nu}\mathbf{R}} \varphi = e^{i\boldsymbol{\nu}\mathbf{R}} \left[\sqrt{\frac{2\omega_3}{\omega_+}} \left(-i\frac{\partial}{\partial\boldsymbol{\xi}} \right) - \mathbf{C}^{(3)} \right]^2 \varphi, \qquad (3.79)$$

где
 $\boldsymbol{\eta}$ - фаза фолновой функции, а векторы
 $\mathbf{C}^{(i)}$ равны

$$\mathbf{C}^{(1)} = \frac{\omega}{\omega_{+}}\mathbf{F} + \frac{e}{4}\sqrt{\frac{\omega_{+}}{2\omega_{3}}}(\mathbf{B} \times \boldsymbol{\xi}) - \frac{\boldsymbol{\pi}}{\sqrt{2}} - \frac{e}{4\sqrt{2}}(\mathbf{B} \times \boldsymbol{\eta}), \qquad (3.80)$$

$$\mathbf{C}^{(2)} = \mathbf{C}^{(1)}(\boldsymbol{\pi} \to -\boldsymbol{\pi}, \boldsymbol{\eta} \to -\boldsymbol{\eta}), \qquad (3.81)$$

$$\mathbf{C}^{(3)} = \frac{\omega_3}{\omega_+} \mathbf{F} + \frac{e}{4} \sqrt{\frac{2\omega_+}{\omega_3}} (\mathbf{B} \times \boldsymbol{\xi}).$$
(3.82)

В следующих комбинациях нетрудно угадать угловые моменты по относительным координатам (очевидно, что угловые моменты по переменным $\boldsymbol{\xi}$ и $\boldsymbol{\eta}$ независимы и коммутируют между собой)

$$(\mathbf{B} \times \boldsymbol{\xi})_k \frac{\partial \varphi}{i \partial \xi_k} = B_k L_k^{(\xi)} \varphi, \quad L_k^{(\xi)} = e_{klm} \xi_l \frac{\partial}{i \partial \xi_m}, \tag{3.83}$$

$$(\mathbf{B} \times \boldsymbol{\eta})_k \frac{\partial \varphi}{i \partial \eta_k} = B_k L_k^{(\eta)} \varphi, \quad L_k^{(\eta)} = e_{klm} \eta_l \frac{\partial}{i \partial \eta_m}.$$
(3.84)

В силу того, что $\hat{\mathbf{F}}$ есть интеграл движения и мы интересуемся основным состоянием системы, собственное значение \mathbf{F} уже на данном этапе можно положить равным нулю, $\mathbf{F} = 0$. Как будет показано далее, в случае нейтрона потенциал конфайнмента можно заменить осцилляторным (аналогично кварк-антикварковой системе, рассмотренной в предыдущем разделе). В этом случае собственная энергия основного состояния зависит от \mathbf{F} тривиальным образом ($E \sim \mathbf{F}^2/2M$), а минимум энергии достигается при $\mathbf{F} = 0$. Финальное выражение для гамильтониана (3.73) имеет вид

$$H_{0} = -\frac{1}{2\omega}(\Delta_{\xi} + \Delta_{\eta}) + \frac{1}{2\omega}\left(\frac{eB}{4}\right)^{2}\left(\frac{\omega_{+}^{2}}{\omega_{3}^{2}}\boldsymbol{\xi}_{\perp}^{2} + \boldsymbol{\eta}_{\perp}^{2}\right) + \frac{e\mathbf{B}}{4\omega}\left(\frac{\omega_{3} - 2\omega}{\omega_{3}}\mathbf{L}^{(\xi)} + \mathbf{L}^{(\eta)}\right) + \sum_{i=1}^{3}\frac{m_{i}^{2} + \omega_{i}^{2}}{2\omega_{i}}$$

$$(3.85)$$

Далее рассмотрим, каким образом линейный потенциал конфайнмента можно заменить осилляторным.

$$V_{\text{conf}} = \sigma \sum_{i=1}^{3} |\mathbf{z}^{(i)} - \mathbf{z}_{Y}| \to V_{\text{conf}}^{(\gamma)} = \frac{\sigma}{2} \left\{ \sum_{i=1}^{3} \left[\frac{(\mathbf{z}^{(i)} - \mathbf{z}_{Y})^{2}}{\gamma} \right] + 3\gamma \right\} = 3\frac{\sigma\gamma}{2} + \frac{\sigma}{2\gamma} \sum_{i=1}^{3} (\mathbf{z}^{(i)} - \mathbf{z}_{Y})^{2}.$$
 (3.86)

В данном выражении появляется допоплнительный параметр γ , по которому после вычисления спектра должна быть проведена минимизация. Для оценки

$$\min_{\gamma} V_{\text{conf}}^{(\gamma)} = \sigma \left\{ \sum_{i=1}^{3} (\mathbf{z}^{(i)} - \mathbf{z}_{Y})^{2} \right\}^{1/2} \le \sigma \sum_{i=1}^{3} \left\{ (\mathbf{z}^{(i)} - \mathbf{z}_{Y})^{2} \right\}^{1/2} = V_{\text{conf}}.$$
 (3.87)

Данное приближение уже использовалось в расчетах [46, 47, 48] и показало отклонение порядка 5% от решения задачи с линейным потенциалом конфайнмента. Следующее сделанное приближение - фиксация точки ветвления струны \mathbf{z}_Y . Точка Торричелли считается неподвижной и помещается в начало координат. С учетом всех приближений потенциал конфайнмента в координатах Якоби запишется так:

$$V_{\rm conf}^{(\gamma)} = \frac{3\sigma\gamma}{2} + \frac{\sigma}{2\gamma} \left(\frac{\omega_3^2 + 2\omega^2}{\omega_+ \omega_3} \boldsymbol{\xi}^2 + \boldsymbol{\eta}^2 \right).$$
(3.88)

Из выражений (3.85) и (3.88) видно, что относительные переменные $\boldsymbol{\xi}$ и $\boldsymbol{\eta}$ полностью разделяются и волновую функцию системы можно записать в виде $\varphi(\boldsymbol{\xi}, \boldsymbol{\eta}) = \chi(\boldsymbol{\xi})\phi(\boldsymbol{\eta})$. Спектр гамильтониана (3.85) представляет из себя совокупность гармонических осцилляторов, а основное состояние системы($\mathbf{F} = 0, L_{\boldsymbol{\xi}} = L_{\boldsymbol{\eta}} = 0$, спин-изоспиновая конфигурация $|d_{-}d_{-}u_{+}\rangle)$ дается выражением

$$\frac{M_0(\omega_i,\gamma)}{\sqrt{\sigma}} = \Omega_{\xi\perp} + \Omega_{\eta\perp} + \frac{1}{2}(\Omega_{\xi\parallel} + \Omega_{\eta\parallel}) + \frac{3\sqrt{\sigma}\gamma}{2} + \frac{m_d^2 + \omega^2 - \frac{e}{2}B}{\omega\sqrt{\sigma}} + \frac{m_u^2 + \omega_3^2 - eB}{2\omega_3\sqrt{\sigma}}, \quad (3.89)$$

где использованы следующие обозначения для частот гармонических осцилляторов

$$\Omega_{\xi\perp} = \left[\left(\frac{eB}{4\sigma} \right)^2 \frac{a_+^2}{a^2 a_3^2} + \frac{a_3^2 + 2a^2}{\beta a a_+ d_3} \right]^{1/2}, \qquad (3.90)$$

$$\Omega_{\xi\parallel} = \sqrt{\frac{a_3^2 + 2a^2}{\beta a a_+ a_3}},\tag{3.91}$$

$$\Omega_{\eta\perp} = \sqrt{\left(\frac{eB}{4\sigma}\right)^2 \frac{1}{a^2} + \frac{1}{\beta a}},\tag{3.92}$$

$$\Omega_{\eta\parallel} = \frac{1}{\sqrt{\beta a}}.\tag{3.93}$$

Здесь $\omega = a\sqrt{\sigma}, \omega_3 = a_3\sqrt{\sigma}, \gamma = \beta/\sqrt{\sigma}, a_+ = 2a + a_3$. Динамическая масса основного состояния нейтрона получается путем минимизации (3.89) по параметрам a, a_3 и β . Так же на данном этапе необходимо учесть пертурбативную поправку - собственную энергию кварков, которая тоже зависит от магнитного поля. Для трехкварковой системы она дается выражением

$$\Delta_{SE} = -2\frac{3\sqrt{\sigma}}{4\pi a} \left[1 + \eta (\lambda \sqrt{eB + m_1^2}) \right] - \frac{3\sqrt{\sigma}}{4\pi a_3} \left[1 + \eta (\lambda \sqrt{2eB + m_3^2}) \right], \quad (3.94)$$

где

$$\eta(t) = t \int_0^\infty z^2 K_1(tz) e^{-z} dz.$$
(3.95)

После проведения численной минимизации была получена динамическая масса состояния $|d_-d_-u_+\rangle$ нейтрона. Сумма динамической массы и собственно-энергетической поправки в зависимости от магнитного поля приведены на рис.3.1. Из графика видно, что при полях $eB \gg \sigma$ динамическая масса выходит на насыщение и остается практически постоянной с ростом магнитного поля. Такое поведение объясняется тем, что конфигурация $|d_-d_-u_+\rangle$ соответствует нулевой моде Ландау для осцилляторов в (3.85), то есть энергия нулевых колебаний осцилляторов в точности компенсируется магнитной энергией μB спинов кварков во внешнем магнитном поле. Все остальные спин-изоспиновые конфигурации, для которых

Рис. 3.1: Зависимость суммы динамической массы и собственно-энергетической поправки для нейтрона со спин-изоспиновой конфигурацией $|d_-d_-u_+\rangle$ от магнитного поля.

такая компенсация не происходит, будут показывать рост динамической массы с магнитным полем с асимптотикой $M \sim \sqrt{eB}$.

Следующий этап - анализ волновой функции нейтрона, полученной с помощью релятивистского гамильтониана. Полная волновая функция бариона может быть записана в следующей форме

$$\Psi_{B} = [\Psi^{\text{symm}}(\boldsymbol{\xi}, \boldsymbol{\eta})\psi^{\text{symm}}(\sigma, f) + \Psi'(\boldsymbol{\xi}, \boldsymbol{\eta})\psi'(\sigma, f) + \Psi''(\boldsymbol{\xi}, \boldsymbol{\eta})\psi''(\sigma, f) + \Psi^{a}(\boldsymbol{\xi}, \boldsymbol{\eta})\psi^{a}(\sigma, f)]\psi^{a}(\text{color})$$
(3.96)

где $\psi(\sigma, f)$ - спин-флейворная волновая функция, $\psi(\boldsymbol{\xi}, \boldsymbol{\eta})$ - координатная; индексы symm, *a*, *l*, *ll* соответствуют симметричному, антисимметричному и двумерному представлениям 3-частичной перестановочной группы. Так как нас интересует нейтральный барион, поэтому все слагаемые в (3.96), кроме первого, содержат ненулевые компоненты угловых моментов, поэтому в сильном магнитном поле будут подавляться. Поэтому для нейтрона со спином, направленным вниз, волновую
функцию $\psi^{\text{symm}}(\sigma, f)$ можно записать в виде следующей комбинации

$$\psi_n^{\text{symm}}(\sigma, f) = \frac{\sqrt{2}}{6} \{ 2u_+ d_- d_- - d_+ u_- d_- - u_- d_+ d_- + 2d_- u_+ d_- - d_- d_+ u_- - d_+ d_- u_- - d_- d_+ d_- u_- - d_- d_- d_- u_- d_- d_- u_- d_- d_- u_- d_- d_- u_- + 2d_- d_- u_+ \}.$$
(3.97)

В отсутствие магнитного поля и при одинаковых массах кварков классификация волновых функций выглядит особенно простой в силу того, что (3.85) и (3.88) симметричны. При включении магнитного поля симметрия нарушается - 1) Нарушается O(3) симметрия и становится возможным смешивание состояний с $J = \frac{1}{2}$ и $J = \frac{3}{2}$. 2) Нарушается изоспиновая симметрия, разрешая смешивание $I = \frac{1}{2}$ и $I = \frac{3}{2}$ состояний, и 3) H_0 и $V_{\rm conf}^{(\gamma)}$ перестают быть симметричными по кварковым индексам, что приводит к тому, что не все, а только некоторые компоненты в (3.97) становятся доминантными в сильном магнитном поле. В магнитном поле принцип Паули применим только к d-кваркам в одинаковых состояниях. H_0 и $V_{\rm conf}^{(\gamma)}$ симметричны по отношению к замене $\eta \leftrightarrow -\eta$, поэтому $\phi(\eta)$ в волновой функции $\Psi(\xi, \eta) = \phi(\eta)\chi(\xi)$ имеет симметрию $\phi(\eta) = \phi(-\eta)$, а $\psi_n^{\rm symm}(\sigma, f)$ симметрична по d, d спиновым квантовым числам. Слагаемые $(d_+d_-+d_-d_+)u_-$ и $d_-d_-u_+$ в (3.97) удовлетворяют данным условиям. При включении магнитного поля B нейтрон расщепляется на три состояния (в порядке возрастания энергии): $(d_-d_-u_+)$, $(d_-d_+u_-), (d_+d_-u_-)$.

Волновая функия состояния $(d_{-}d_{-}u_{+})$ допускает разделение переменных и выглядит следующим образом

$$\Psi(\boldsymbol{\xi}, \boldsymbol{\eta}) = \psi_1(\xi_\perp) \psi_2(\xi_\parallel) \varphi_1(\eta_\perp) \varphi_2(\eta_\parallel), \qquad (3.98)$$

где

$$\psi_1(\xi_\perp) = \frac{1}{\sqrt{\pi r_{\xi_\perp}^2}} \exp\left(-\frac{\xi_\perp^2}{2r_{\xi_\perp}^2}\right),\tag{3.99}$$

$$\psi_2(\xi_{\parallel}) = \frac{1}{(\pi r_{\xi_{\parallel}}^2)^{1/4}} \exp\left(-\frac{\xi_{\parallel}^2}{2r_{\xi_{\parallel}}^2}\right),\tag{3.100}$$

$$\varphi_1(\eta_\perp) = \frac{1}{\sqrt{\pi r_{\eta_\perp}^2}} \exp\left(-\frac{\eta_\perp^2}{2r_{\eta_\perp}^2}\right),\tag{3.101}$$

$$\varphi_2(\eta_{\parallel}) = \frac{1}{(\pi r_{\eta_{\parallel}}^2)^{1/4}} \exp\left(-\frac{\eta_{\parallel}^2}{2r_{\eta_{\parallel}}^2}\right), \qquad (3.102)$$

Таким образом, волновая функция относительного движения представляет собой совокупность двух эллипсоидов вращения вдоль оси, параллельной направлению магнитного поля. Среднеквадратичные радиусы этих эллипсоидов выражаются через частоты гармонических осцилляторов следующим образом

$$r_{\xi_{\perp}}^{-2} = \omega \Omega_{\xi_{\perp}} \cdot \sqrt{\sigma}, \quad r_{\xi_{\parallel}}^{-2} = \omega \Omega_{\xi_{\parallel}} \sqrt{\sigma}, \tag{3.103}$$

$$r_{\eta_{\perp}}^{-2} = \omega \Omega_{\eta_{\perp}} \cdot \sqrt{\sigma}, \quad r_{\eta_{\parallel}}^{-2} = \omega \Omega_{\eta_{\parallel}} \sqrt{\sigma}.$$
(3.104)

3.3 Модель заряженного мезона, $q_1 = q_2$.

Как уже было сказано выше, интеграл движения для систем в магнитном поле существует только для нейтральных систем. Однако, можно рассмотреть модельную задачу, в которой заряды частиц совпадают. С помощью данной модели можно сделать приближенные оценки динамики массовых спектров заряженных мезонов в магнитном поле (Конечно, в данном случае $u\bar{u}$ будет иметь нефизический полный заряд $\frac{4}{3}$). Рассмотрим релятивистский гамильтониан мезона (3.39), по аналогии с пуктом 3.1 для данной конфигурации и сразу же перейдем в систему центра инерции, предварительно положив $e_1 = e_2 = e$, $m_1 = m_2$, и $\omega_1 = \omega_2$ в силу полной идентичности кварков q_1 и q_2

$$H_{q_1q_2} = \frac{\mathbf{P}}{4\omega} + \frac{e^2}{4\omega} (\mathbf{B} \times \mathbf{R})^2 + \frac{\pi}{\omega} + \frac{e^2}{16\omega} (\mathbf{B} \times \boldsymbol{\eta})^2 + \frac{2m^2 + 2\omega^2 - e(\boldsymbol{\sigma}_1 + \boldsymbol{\sigma}_2)\mathbf{B}}{2\omega} + \frac{\sigma}{2} \left(\frac{\eta^2}{\gamma} + \gamma\right) + V_{OGE} + V_{SS} + \Delta M_{SE} \quad (3.105)$$

Из выше приведенной формулы видно, что условие $e_1 = e_2$ позволяет полностью отделить движение центра инерции (можно заметить, что, в отличие от случая нейтральных мезонов, центр инерции заряженного мезона имеет спектр не как у свободно движущегося объекта $P^2/2M$, а движется по окружности и имеет спектр гармонческого осциллятора). Опуская промежуточные выкладки, полностью аналогичные проделанным подробно в пукте 3.1, запишем результат для динамической массы ρ^+ мезона, составленного из u и \bar{d} кварков с зарядами +1/2 и с проекцией полного спина на ось z равной $s_z = 1$

$$M_n(\omega,\gamma) = \frac{eB}{2\omega}(2N_{\perp}+1) + \sqrt{\left(\frac{eB}{2\omega}\right)^2 + \frac{2\sigma}{\omega\gamma}}(2n_{\perp}+1) + \sqrt{\frac{2\sigma}{\omega\gamma}}(n_z+\frac{1}{2}) - \frac{eB}{\omega} + \frac{\sigma\gamma}{2} + \frac{m^2 + \omega^2}{\omega} + \Delta M_{OGE} + \Delta M_{SE} + \langle a_{SS} \rangle \quad (3.106)$$

Пертурбативные поправки для данной модели рассматриваются в Главе 4, а итоговые массовые спектры - в заключительной Главе 5.

Глава 4

Пертурбативные поправки к массам адронов.

4.1 Одноглюонный обмен и асимптотическая свобода в магнитном поле.

Как было показано в [54], одноглюонный обмен, или цветовой Кулон, дает возрастающий вклад в массу адрона в сильном магнитном поле, в случае, когда он рассматривается в ведущем порядке теории возмущений, то есть экранирование кварковыми петлями отсутствует. При полях порядка $10^{19} - 10^{20}$ Гаусс масса адрона обращается в нуль из-за данной поправки. Такая ситуация - коллапс, характерна как для мезонов, так и для барионов. В литературе имеются утверждения, что обращение в нуль массы мезона должно приводить к перестройке вакуума [23] - [26]. Поправки к цветовому Кулону, возникающие из-за глюонных петель и дающие асимптотическую свободу, никак не подвержены влиянию магнитного поля и поэтому асимптотическая свобода дает лишь замедление коллапса, но не останавливает его. В то же время, как было показано в работах [7] - [11], петлевые поправки к Кулоновскому взаимодействию приводят к стабилизации в атоме водорода. Поэтому фермионные петли, на которые магнитное поле влияет непосредственно через заряды кварков, являются наиболее подходящим кандидатом для стабилизации неконтроллируемого роста Кулоновской энергии связи. В дальнейшем будет рассматриваться матричный элемент одноглюонного обмена, включающий как глюонный, так и кварк-антикварковый поляризационные операторы.

Рассмотрим глюонный пропагатор

$$D(q) = \frac{4\pi}{q^2 - \frac{g^2(\mu_0^2)}{16\pi^2}\tilde{\Pi}(q)},$$
(4.1)

где $\tilde{\Pi}(q)$ - сумма глюонного и кваркового поляризационного операторов

$$\tilde{\Pi}(q) = q^2 \Pi_{gl}(q) - \tilde{\Pi}_{q\bar{q}}(q).$$
(4.2)

В отсутствие магнитного поля выражения для поляризационных операторов запишутся стандартным образом

$$\Pi_{gl}(q) = -\frac{11}{3} N_c \ln \frac{|q^2|}{\mu_0^2},\tag{4.3}$$

$$\tilde{\Pi}_{q\bar{q}}(q) = -\frac{2}{3}n_f q^2 \ln \frac{|q^2|}{\mu_0^2},\tag{4.4}$$

Вводя стандартные обозначения $(q^2 = -\mathbf{Q}^2 = -(q_\perp^2 + q_3^2), \ \alpha_s^{(0)} = \frac{g^2(\mu_0^2)}{4\pi}),$

$$V(Q) = -\frac{4}{3} \frac{\alpha_s^{(0)} 4\pi}{Q^2 \left(1 + \frac{\alpha_s^{(0)}}{4\pi} \beta_0 \ln \frac{Q^2}{\mu_0^2}\right)} = -\frac{16\pi}{3Q^2} \alpha_s(Q), \tag{4.5}$$

$$\alpha_s(Q) = \frac{4\pi}{\beta_0 \ln \frac{Q^2}{\Lambda^2}},\tag{4.6}$$

где $\beta_0 = \frac{11}{3}N_c - \frac{2}{3}n_f$. В случае сильного магнитного поля $(eB \gg \sigma)$ можно рассматривать только нижние уровни Ландау для кварк-антикварковой петли, что отвечает поляризациям $(q_0, 0, 0, q_3)$ в пропагаторе. Данное выражение известно достаточно давно для (e^+e^-) пар [7], которое в нашем случае можно переписать просто заменяя $\alpha_{QED} \to \alpha_s^{(0)} \frac{n_f}{2}$

$$\frac{\alpha_s^{(0)}}{4\pi}\tilde{\pi}_{q\bar{q}}(q) = -\frac{\alpha_s^{(0)}n_f |e_q B|}{\pi} \exp\left(-\frac{q_\perp^2}{2|e_q B|}\right) T\left(\frac{q_3^2}{4m^2}\right),\tag{4.7}$$

где

$$T(z) = -\frac{1}{2\sqrt{z(z+1)}} \ln\left(\frac{\sqrt{1+z} + \sqrt{z}}{\sqrt{1+z} - \sqrt{z}}\right) + 1 = \begin{cases} \frac{2}{3}z, & z \ll 1\\ 1, & z \gg 1 \end{cases}.$$
 (4.8)

На данном этапе необходимо ввести массовый параметр, который был бы аналогом перенормированной массы электрона в случае квантовой элктродинамики.

Рис. 4.1: Глюонные и $q\bar{q}$ петли в глюонном обмене между кварком Q и антикварком \bar{Q} в мезоне $(Q\bar{Q})$.

Глюонный и кварк-антикварковый вклады во взаимодействия схематично изображены на рис.4.1, где глюонные линии заменены для наглядности на двойные фермионные линии чтобы разделить калибровочно взаимодействующие области. Области, в которых между кварками существует пленка конфайнмента в пространствевремени заштрихованы. Из рис.4.1 видно, что кварк и антикварк в кварковой петле не могут взаимодействовать путем глюонного обмена, а только путем обмена белыми объектами (мезонами или глюболлами) в высших порядках теории возмущений.

Кроме того, энергии кварка Q и антикварка \bar{Q} , движущихся по внешним сторонам петли на рис.4.1 и образующих мезон, должны быть порядка энергии натяжения струны, то есть $\sqrt{\sigma}$, и поэтому в формуле (4.7) можно заменить $4m^2$ на 4σ .

И последнее, что необходимо учесть - непертурбативное взаимодействие при помощи конфайнмента внутри петли $Q\bar{Q}$. Как было показано в работах [55, 56, 57], это осуществляется с помощью замены

$$\ln \frac{Q^2}{\mu_0^2} \to \ln \frac{Q^2 + M_B^2}{\mu_0^2},\tag{4.9}$$

где параметр $M_B \approx 1$ GeV и выражается исключительно через натяжение струны σ . В результате для потенциала одноглюонного обмена получается следующее выражение

$$V(Q) = -\frac{16\pi\alpha_s^{(0)}}{3\left[Q^2\left(1 + \frac{\alpha_s^{(0)}}{4\pi}\frac{11}{3}N_c\ln\frac{Q^2 + M_B^2}{\mu_0^2}\right) + \frac{\alpha_s^{(0)}n_f|e_qB|}{\pi}\exp\left(\frac{-q_\perp^2}{2|e_qB|}\right)T\left(\frac{q_3^2}{4\sigma}\right)\right]} \quad (4.10)$$

где $\alpha_s^{(0)} = \frac{4\pi}{\frac{11}{3}N_c\ln\frac{\mu_0^2 + M_B^2}{\Lambda_V^2}}$ и $Q^2 = q_\perp^2 + q_3^2$.

Рис. 4.2: Поправка к массе мезона, вызванная одноглюонным обменом. Штрихпунктирная линия - Кулоновский коллапс мезона в отсутсвии экранировнаия одноглюонного обмена кварк-антикварковыми петлями. Сплошная линия - экранирование парами $q\bar{q}$ предотвращает коллапс.

Далее можно оценить вклад в массу от поправки, возникающей из-за цветового Кулона, путем усреднения матричного элемента (4.10) по волновой функции нейтрального мезона в магнитном поле, которая была получена в Главе 3

$$\psi(\eta_1, \eta_3) = \frac{1}{\sqrt{\pi^{3/2} r_\perp^2 r_3}} \exp\left(-\frac{\eta_\perp^2}{2r_\perp^2} - \frac{\eta_3^2}{2r_3^2}\right),\tag{4.11}$$

где r_{\perp} и r_3 - среднеквадратичные радиусы мезона(который в сильном магнитном поле вытягивается в эллипсоид вращения) поперек и вдоль магнитного поля соответственно. При больших полях эти радиусы имеют следующие асимптотики $r_{\perp} \approx \sqrt{\frac{2}{eB}}, r_3 \approx \sqrt{\frac{2}{\sigma}}$. Поправка к массе мезона вызванная одногюонным обменом равна

$$\langle V(Q) \rangle_{mes} = \int V(Q) \psi^2(q_\perp, q_3) \frac{d^2 q_\perp dq_3}{(2\pi)^3},$$
(4.12)

где $\psi^2(q_{\perp}, q_3)$ - Фурье-образ квадрата модуля волновой функции $\psi^2(\eta_1, \eta_3)$. Теперь,

подставив в данное выражение (4.10) и введя новые обозначения, получим

$$\langle V(Q) \rangle_{mes} = -C \int \frac{e^{-\frac{q_{\perp}^2 r_{\perp}^2}{4} - \frac{q_3^2 r_3^2}{4}} d^2 q_{\perp} dq_3}{Q^2 A(q_{\perp}^2 + q_3^2) + B(q_{\perp}^2, q_3^2)},$$
(4.13)

где

$$A = 1 + \frac{\alpha_s^{(0)}}{4\pi} \frac{11}{3} N_c \ln\left(\frac{q_\perp^2 + q_3^2 + M_B^2}{\mu_0^2}\right), \qquad (4.14)$$

$$B = \frac{\alpha_s^{(0)} n_f |e_q B|}{\pi} e^{-\frac{q_\perp^2}{2|e_q B|}} T\left(\frac{q_3^2}{4\sigma}\right), \quad C = \frac{16\pi\alpha_s^{(0)}}{3(2\pi)^3}.$$
 (4.15)

$$\alpha_s^{(0)} = \frac{4\pi}{\frac{11}{3}N_c \ln \frac{\mu_0^2 + M_B^2}{\Lambda_V^2}} \tag{4.16}$$

Численное вычисление интеграла, проведенное по формуле (4.13) показано на рис.4.2. Вычисления проводились при следующих значениях параметров: $n_f = 3$, $\mu_0 = 1.1 \text{ GeV}$, $\Lambda_V = 0.385 \text{ GeV}$ и $\alpha_s^{(0)} = 0.42$. Штрих-пунктирной линией показан результат для $A_2(Q) = 0$ что соответствует отсутствию кварковых петель. Видно, что в данном случае Кулоновская поправка показывает неконтроллируемый отрицательный рост при асимптотически больших магнитных полях, то есть происходит коллапс мезона. При наличии экранирования кварк-антикварковыми петлями поправка, показанная на рисунке сплошной линией, выходит на насыщение при $eB \sim 12 \ GeV^2$. Далее, при асимптотически больших полях, $\langle V(Q) \rangle_{mes}$ демонстрирует асимптотическую свободу при $Q^2 \to \infty$ и при $eB \to \infty$.

Рассмотрим кулоновскую поправку для бариона. Воспользуемся волновой функцией нейтрона, полученной в Главе 3 в (3.98), и далее перепишем волновую функцию в импульсном представлении. Кварки попарно взаимодействуют посредством одноглюонного обмена, поэтому вводятся дополнительные индексы i, j = 1, 2, 3

$$\Delta M_{Coul}(\rho_{\perp}(ij), \rho_z(ij)) = \int \frac{d^2 q_{\perp} dq_z}{(2\pi)^3} V(q) e^{-\frac{q_{\perp}^2 \rho_{\perp}^2(s)}{4} - \frac{q_{\parallel}^2 \rho_{\parallel}^2(s)}{4}}.$$
(4.17)

Здесь

$$\rho_{\perp}^{2}(12) = \frac{1}{\sqrt{\left(\frac{eB}{4}\right)^{2} + \frac{a\sigma^{2}}{\beta}}}, \quad \rho_{\parallel}^{2}(12) = \frac{1}{\sigma}\sqrt{\frac{\beta}{a}}; \quad (4.18)$$

$$\rho_{\perp}^{2}(13) = \rho_{\perp}^{2}(23) = \frac{1}{\sqrt{\left(\frac{eB}{2}\right)^{2} + 4\sigma^{2}\frac{aa_{3}}{\beta a_{+}^{3}}(a_{3}^{2} + 2a^{2})}} + \left[\left(\frac{eB}{2}\right)^{2} + \frac{4\sigma^{2}a}{\beta}\right]^{-1/2}, \quad (4.19)$$

$$\rho_{\parallel}^{2}(13) = \frac{1}{2\sigma} \left[\frac{a_{+}^{3}\beta}{a_{3}a(a_{3}^{2}+2a^{2})} \right]^{1/2} + \frac{1}{2\sigma}\sqrt{\frac{\beta}{a}}, \quad (4.20)$$

$$\rho_{\perp}^{2}(13) = \rho_{\perp}^{2}(23), \rho_{\parallel}^{2}(13) = \rho_{\parallel}^{2}(23) \quad (4.21)$$

Рис. 4.3: Кулоновская поправка к массе нейтрона в зависимости от магнитного поля. Можно видеть насыщение при $eB > 4 \ GeV^2$, вызванное вкладом кваркантикваруовых петель.

Параметры ρ , задающие характрные размеры плотности волновой функции, имеют следующие асимпотоики при $eB \to \infty$: ρ_{\perp} и ρ_{\parallel} стремятся соответственно к $\frac{2}{\sqrt{eB}}$ и $\frac{1}{\sqrt{\sigma}}$ для индексов s = 12, и соответственно к $\frac{2}{\sqrt{eB}}$ и $\sqrt{\frac{2}{\sigma}}$ для индексов s = 13, 23.

Обозначая Кулоновскую поправку для мезона (4.13) как $\Delta M_{\text{Coul}}^{\text{mes}}(r_{\perp}^2, r_{\parallel}^2)$, можно выразить $\Delta M_{\text{Coul}}^{\text{bar}}$ как

$$\Delta M_{\rm Coul}^{\rm bar} = \frac{1}{2} \Delta M_{\rm Coul}^{\rm mes}(\rho_{\perp}^2(12), \rho_{\parallel}^2(12)) + \Delta M_{\rm Coul}^{\rm mes}(\rho_{\perp}^2(13), \rho_{\parallel}^2(13)).$$
(4.22)

Результат численного расчета Кулоновской поправки для нейтрона по записанным выше формулам приведен на рис.4.3. Поправка демонстрирует насыщение при $eB > 4 \ GeV^2$ аналогичное случаю мезонов.

4.2 Спин-спиновое взаимодействие, расщепление уровней, и магнитная фокусировка волновой функции атома водорода в магнитном поле.

Наличие внешнего магнитного поля нарушает вращательную симметрию O(3) и изоспиновую симметрию SU(2). Поэтому уровни с различным спином и изоспином будут расщепляться. В данном разделе будет рассмотрено расщепление состояний с различным спином и изоспином для мезонов и барионов. Выпишем еще раз выражение, полученное в Главе 3, для динамической массы мезона (3.51)

$$M_n(\omega_1, \omega_2, \gamma) = \varepsilon_{n_\perp, n_z} + \frac{m_1^2 + \omega_1^2 - e\mathbf{B}\boldsymbol{\sigma}_1}{2\omega_1} + \frac{m_2^2 + \omega_2^2 + e\mathbf{B}\boldsymbol{\sigma}_2}{2\omega_2} + \langle \Delta M_{\rm Coul} \rangle + \Delta M_{SE},$$
(4.23)

Естественным представлением(в котором оператор диагонален) для спиновых состояний данного гамильтониана является набор из четырех базисных волновых функций $|++\rangle$, $|+-\rangle$, $|-+\rangle$ и $|--\rangle$, где + и - соответствуют проекциям спинов 1-го и 2-го кварков вдоль и против направления магнитного поля соответственно. Обозначая независящую от спинов часть динмаической массы в (4.23) как \bar{M}_n и фиксируя номер уровня n, получим выражения для динамических масс различных спиновых конфигураций

$$M_n^{++} = \bar{M}_n - eB\left(\frac{1}{2\omega_1} - \frac{1}{2\omega_2}\right),$$
(4.24)

$$M_n^{--} = \bar{M}_n + eB\left(\frac{1}{2\omega_1} - \frac{1}{2\omega_2}\right),$$
(4.25)

$$M_n^{+-} = \bar{M}_n - eB\left(\frac{1}{2\omega_1} + \frac{1}{2\omega_2}\right),$$
(4.26)

$$M_n^{++} = \bar{M}_n + eB\left(\frac{1}{2\omega_1} + \frac{1}{2\omega_2}\right);$$
(4.27)

В пертурбативной части гамильтониана (3.39) W содержится потенциал спинспинового взаимодействия V_{SS} , описывающийся выражением

$$V_{SS} = \frac{8\pi\alpha_s}{9\omega_1\omega_2}\delta^{(3)}(\mathbf{r})(\boldsymbol{\sigma}_1\boldsymbol{\sigma}_2) = a_{SS}(\boldsymbol{\sigma}_1\boldsymbol{\sigma}_2), \qquad (4.28)$$

который приводит к смешиванию состояний с различными проекциями спинов. Это приводит к тому, что образуются четыре новых состояния. Два из них являются смесью $|+-\rangle$ и $|-+\rangle$, и соответствуют π^0 и ρ^0 мезонам с проекцией полного спина $s_z = 0$ при нулевом внешнем магнитном поле, а состояния $|++\rangle$ и $|--\rangle$ - ρ^0 мезону с проекциями спина $s_z = 1$ и $s_z = -1$ соответственно(далее рассматривается только основное состояние, в котором квантовое число n = 0). Далее, проводя диагонализацию оператора $M_n + V_{SS}$, получаем массы для первых двух смешанных состояний

$$E_{1,2} = \frac{1}{2}(M_{11} + M_{22}) \pm \sqrt{\left(\frac{M_{22} - M_{11}}{2}\right)^2 + 4a_{12}a_{21}},\tag{4.29}$$

где

$$M_{11} = (M_0^{+-} + \Delta M_{SE} - \langle a_{SS} \rangle)|_{\omega_1^{(0)} = \omega_2^{(0)} = \omega_{+-}},$$
(4.30)

$$M_{22} = (M_0^{-+} + \Delta M_{SE} - \langle a_{SS} \rangle)|_{\omega_1^{(0)} = \omega_2^{(0)} = \omega_{-+}},$$
(4.31)

$$a_{12} = a_{21} = a_{SS}|_{\omega_1^{(0)} = \omega_{+-}, \ \omega_2^{(0)} = \omega_{-+}}, \tag{4.32}$$

и $\langle a_{SS} \rangle$ - усредненная по волновой функции (3.56) спин-спиновая поправка (4.28). Параметры ω_{+-} и ω_{-+} находятся путем минимизации M_0^{+-} и M_0^{-+} . Нетрудно убедиться в том, что при больших полях массы $E_{1,2}$ стремятся к своим диагональным значениям

$$E_1(eB \to \infty) \to M_{11}, \ E_2(eB \to \infty) \to M_{22}.$$
 (4.33)

Оставшиеся два состояния не смешиваются в магнитном поле и всюду остаются диагональными

$$E_3 = M_0^{++} + \Delta M_{SE} + \langle a_{SS} \rangle), \qquad (4.34)$$

$$E_4 = M_0^{--} + \Delta M_{SE} + \langle a_{SS} \rangle). \tag{4.35}$$

На данном этапе важно отметить, что система $\bar{q}q$ расщепляется в магнитном поле на 8 состояний, соответствующих различным спинам и изоспинам. Так как симметрия изоспина явно нарушена, то каждое электрически нейтральное состояние $\bar{q}q$ дополнительно расщепляется на $\bar{u}u$ и $\bar{d}d$ из-за разницы в величине электрических зарядов u и d кварков.

Наибольший интерес представляет поведение заряженного ρ^+ мезона с проекцией спина $s_z = 1$ (имеющий спиновую конфигурацию $|++\rangle$. Как было показано в разделе 3.3, собственное значение релятивистского гамильтониана, дающее динамическую массу для этой конфигурации задается следующим выражением

$$M_n(\omega,\gamma) = \frac{eB}{2\omega}(2N_{\perp}+1) + \sqrt{\left(\frac{eB}{2\omega}\right)^2 + \frac{2\sigma}{\omega\gamma}}(2n_{\perp}+1) + \sqrt{\frac{2\sigma}{\omega\gamma}}(n_z+\frac{1}{2}) - \frac{eB}{\omega} + \frac{\sigma\gamma}{2} + \frac{m^2 + \omega^2}{\omega} + \Delta M_{OGE} + \Delta M_{SE} + \langle a_{SS} \rangle \quad (4.36)$$

Для данного состояния, так же как и для состояния E_2 нейтрального мезона(отвечающему состоянию π^0 при нулевом магнитном поле), происходит компенсация энергии гармонических осцилляторов в (4.36) магнитной энергией μB кварков, то есть система находится на нижнем уровне Ландау (нулевая мода). Таким образом, массы данных состояний в магнитном поле стремятся к некоторому конечному пределу, в отличие от всех других конфигураций, которые испытывают рост с асимптотикой $\sim \sqrt{eB}$. В данном случае, на первый план выходит спин-спиновое взаимодействие, матричный элемент которого содержит $|\Psi(0)|^2$. Как уже говорилось ранее в Главе 3, в сверхсильном магнитном поле волновая функция начинает сжиматься в плоскости, перпендикулярной магнитному полю. Данный эффект приводит к тому, что $|\Psi(0)|^2 \sim eB$. В то же время, поправка ΔM_{SS} имет отрицательный знак, что приводит к неконтроллируемому уменьшению массы мезона, вплоть до нулевой. То есть происходит коллапс, вызванный сверхтонким взаимодействием. Данный эффект роста $|\Psi(0)|^2$ в сверхсильном магнитном поле носит достаточно общий характер, то есть происходит "фокусировка" сверхтонкого взаимодействия магнитным полем. Данного проблемы удается избежать, если вспомнить, что в методе вакуумных корреляторов происходит усреднение по хаотическим фоновым глюонным полям. То есть теория содержит естественный размерный параметр обрезания, а именно корреляционную длину вакуумного поля $\lambda \sim 1 \ GeV^{-1}$. Для предотвращения коллапса необходимо "размазать" точечное взаимодействие $\delta^{(3)}(\mathbf{r})$ в (4.28) по характерному масштабу λ :

$$\delta^{(3)} \to \left(\frac{1}{\lambda\sqrt{\pi}}\right)^3 e^{-\mathbf{r}^2/\lambda^2},$$
(4.37)

Данная процедура позволяет устранить неконтроллируемое уменьшение массы мезонов в магнитном поле. Выражение для модифицированного матричного элемента сверхтонкого взаимодействия, усредненного по пространственной части волновой функции, выглядит следующим образом

$$\langle a_{SS} \rangle = \frac{c}{\pi^{3/2} \sqrt{\lambda^2 + r_0^2} (\lambda^2 + r_\perp^2)}, \ c = \frac{8\pi \alpha_s}{9\omega_1 \omega_2}.$$
 (4.38)

Итоговые результаты для массовых спектров нейтральных и заряженных мезонов приведены в заключительной Главе 5.

Далее следует рассмотреть расщепление состояний с различным спином и изоспином для нейтрона. Для этого нужно, как и в предыдущем параграфе, диагонализовать зависящие от спина слагаемые в соответствующем гамильтониане нейтрона

$$h_{\sigma} = \Delta_{ss}^{\text{pert}} + V_{\sigma} = \Delta_{ss}^{\text{pert}} - \sum_{i=1}^{3} \frac{e_i \sigma_z^{(i)} B}{2\omega_i} \equiv \\ \equiv d\sigma_3(\sigma_1 + \sigma_2) + b\sigma_1\sigma_2 - c_3\sigma_{3z} + c(\sigma_{1z} + \sigma_{2z}), \quad (4.39)$$

где

$$d = \frac{4\alpha_s}{9\omega\omega_3} \langle \delta(\mathbf{r}_{31}) \rangle, \quad b = \frac{4\alpha_s}{9\omega^2} \langle \delta(\mathbf{r}_{12}) \rangle,$$
$$c = \frac{eB}{4\omega}, \quad c_3 = \frac{eB}{2\omega_3}. \quad (4.40)$$

Чтобы избежать коллапса сверхтонкого взаимодействия, возникающего за счет магнитной фокусировки, делается размазка δ -функции аналогично случаю мезонов.

$$\delta^{(3)}(\mathbf{r}) \to \tilde{\delta}^{(3)}(\mathbf{r}) = \left(\frac{1}{\lambda\sqrt{\pi}}\right)^3 e^{-\mathbf{r}^2/\lambda^2}, \quad \lambda \sim 1 \text{ GeV}^{-1}.$$
(4.41)

Стоит заметить, что данная процедура в случае нейтрона не позволяет полностью устранить коллапс, а лишь переносит его в область больших магнитных полей. Подробнее данное явление рассматривается в заключительной Главе 5. После усреднения по волновой функции основного состояния нейтрона (3.98), получим

$$\langle \tilde{\delta}^{(3)}(\mathbf{r}_{13}) \rangle = \left(\frac{2a\sigma}{\pi}\right)^{3/2} \left[1 + \frac{2\lambda^2 a_3}{a_+} a\sigma \Omega_{\xi_\perp}\right]^{-1} \left[1 + \frac{2\lambda^2 a_3}{a_+} a\sigma \Omega_{\xi_\parallel}\right]^{-1/2} \times \\ \Omega_{\xi_\perp} \Omega_{\eta_\perp} \Omega_{\xi_\parallel}^{1/2} \Omega_{\eta_\parallel}^{1/2} \left[\frac{a_+}{a_3} \Omega_{\eta_\perp} + \frac{\Omega_{\xi_\perp}}{1 + \frac{2\lambda^2 a_3}{a_+} a\sigma \Omega_{\xi_\perp}}\right]^{-1} \left[\frac{a_+}{a_3} \Omega_{\eta_\parallel} + \frac{\Omega_{\xi_\parallel}}{1 + \frac{2\lambda^2 a_3}{a_+} a\sigma \Omega_{\xi_\parallel}}\right]^{-1/2},$$

$$(4.42)$$

$$\langle \tilde{\delta}^{(3)}(\mathbf{r}_{12}) \rangle = \left(\frac{a\sigma}{\pi}\right)^{3/2} \Omega_{\eta_{\perp}} \Omega_{\eta_{\parallel}}^{1/2} \frac{1}{2 + \lambda^2 a \sigma \Omega_{\eta_{\perp}}} \frac{1}{\sqrt{2 + \lambda^2 a \sigma \Omega_{\eta_{\parallel}}}}.$$
 (4.43)

Так как метод пседоимпульса позволяет найти решения только для таких состояний, в которых спины d кварков сонаправлены, нас будет интересовать каким образом состояние $|-++\rangle$ смешивается с другими конфигурациями спинов. Данное смешивание особо важно при нулевом магнитном поле, потому как именно оно определяет расщепление между нейтроном n и Δ -изобарой. Для получения физического значения этого расщепления при нулевом магнитном поле необходимо выполнить сшивку решения для области ($eB > \sigma$, полученного с помощью метода псевдоимпульса и решения для области малых полей $eB < \sigma$, полученного с помощью теории возмущений. Подробно расщепление состояний n и Δ и процедура сшивки рассматривается в Приложении А. Смешивание между состояниями с полным спином S = 1/2 и S = 3/2 происходит за счет слагаемого $d\sigma_3(\sigma_1 + \sigma_2)$. Запишем волновую функцию трехкварковой системы с проекцией с полного спина на ось z равной -1/2

$$\Psi_{-\frac{1}{2}} = \alpha(--+) + \frac{\beta}{\sqrt{2}}[(+--) + (-+-)], \quad \alpha^2 + \beta^2 = 1.$$
(4.44)

Заметим, что, хотя не зависящая от спина часть релятивистского гамильтониана бариона явным образом не зависит от проекции спина, после процедуры минимизации по динамическим массам ω получаются разные ответы. Этот факт объясняется тем, что минимизируются собственные значения полного гамильониана, который включает в себя спин-зависимые члены. Поэтому динамическая масса M_0 для состояния (--+) все динамические массы кварков ω_i стремятся к константе при $eB \to \infty$, в то время как для состояния $\frac{1}{\sqrt{2}}[(+--)+(-+-)]$ мы имеем одну фиксированную и две растущие ω_i . Это приводит к тому, что динамическая масса M_0 состояния $\frac{1}{\sqrt{2}}[(+--)+(-+-)]$ растет с увеличением магнитного поля. При нулевом магнитном поле коэффициенты α и β принимают значения $\alpha_n = \sqrt{\frac{2}{3}}, \quad \beta_n = -\frac{1}{\sqrt{3}}$ для нейтрона и $\alpha_\Delta = \frac{1}{\sqrt{3}}, \quad \beta_\Delta = \sqrt{\frac{2}{3}}$ для Δ -изобара. При включении магнитного поля нейтрон и Δ начинают смешиваться, поэтому будем обозначать состояние, масса которого с увеличением поля уменьшается, как n_B , а растущее состояние - как Δ_B . В пределе бесконечно большого поля $eB \to \infty$ имеем $\alpha_n = 1, \beta_n = 0$ и $\alpha_\Delta = 0, \beta_\Delta = 1$, то есть состояние (- +) становится чистым. При полях $eB > \sigma$ состояние (--+) служит хорошим приближением для основного состояния системы.

Явление магнитной фокусировки носит общий характер. Наглядно проиллюстрировать данный факт можно на примере атома водорода. Спектр атома водорода в сильном магнитном поле был вычислен очень давно [59]. В настоящее время создание сверхсильных магнитных полей в лабораторных условиях, как говорилось в Главе 1, становится реальностью. Среди новых результатов в физике атома водорода в сильном магнитном поле, можно упомянуть эффект экранирования Кулоновского потенциала электрон-позитронными парами в магнитном поле [7]-[11]. В заключительной части данного раздела внимание будет сосредоточено на сверхтонком расщеплении в атоме водорода и оценке поправки к линии 21см[58], возникающей из-за эффекта магнитной фокусировки. Данная поправка возникает из-за того, что атом водорода в сильном магнитном поле $B \gg B_a$ (где $B_a = m^2 e^3 = 2.35 \cdot 10^9 G$ - атомное магнитное поле) начинает вытягиваться в эллипсоид вращения вдоль направления магнитного поля. Данная деформация оказывает влияние на матричный элемент сверхтонкого взаимодействия и приводит к дополнительной поправке к стандартному Зеемановскому расщеплению уровней.

В данном разделе, в отличие от остальных глав, используются следующие единицы: $\hbar = c = 1$, $\alpha = e^2 = 1/137$, безразмерное магнитное поле определяется как $H = B/B_a$, где $B_a = m^2 e^3 = 2.35 \cdot 10^9 G$ -атомное магнитное поле. При $B = B_a$ Боровский радиус $a_B = (\alpha m)^{-1}$ равен магнитному радиусу, или радиусу Ландау $a_H = (eB)^{-1/2}$. Энергия гармонического осциллятора в задаче Ландау о движении частицы в магнитном поле $\omega = eB/2m$ становсится равна Ридберговской энрегии $Ry = m\alpha^2/2$. Также в этих единицах 1 $GeV^2 = 1.45 \cdot 10^{19} G$.

Для решения задачи удобно перейти в цилиндрические координаты и направить магнитное поле вдоль оси z. Также для вектор-потенциала используется симметрическая калибровка $\mathbf{A} = \frac{1}{2}\mathbf{B} \times \mathbf{r}$. Нерелятивистский гамильтониан атома водорода в магнитном поле запишется следующим образом

$$\hat{\mathcal{H}} = -\frac{1}{2m} \left(\Delta_{\perp} + \frac{\partial^2}{\partial z^2} \right) + \omega \hat{l}_z + \frac{m\omega^2 \rho^2}{2} - \frac{\alpha}{\sqrt{\rho^2 + z^2}} + \mu_B \sigma_z B, \qquad (4.45)$$

где Δ_{\perp} часть лапласиана в плоскости ху, $\mu_B = e/2m$, e - абсолютное значение элементарного заряда, $\sigma = 2\mathbf{s}_e$, $\sigma_z = \pm 1$. Уравнение Шредингера (4.45) не позволяет разделить движение вдоль оси z и в плоскости ху, но в пределе сверхсильного магнитного поля, когда $H \gg 1$, "быстрая" переменная ρ , отвечающая за движение в магнитном поле, и "меделенная" переменная z, движение вдоль которой определяется преимущественно кулоновским потенциалом, могут быть отделены с помощью адиабатического анзатца [59, 60]

$$\Psi(\boldsymbol{\rho}, z) = R_{n_{\boldsymbol{\rho}}m}(\boldsymbol{\rho})\chi_{nn_{\boldsymbol{\rho}}m}(z)\chi_{\sigma_z}.$$
(4.46)

Для полей $H \gg 1$ основную роль играет нижний уровень Ландау $n_{\rho} = 0, m = 0, -1, -2, ..., \sigma_z = -1$. В данном состоянии энергия гармонического осциллятора в плоскости ху и магнитная энергия спина $\mu_B B$ компенсируют друг друга. На данном этапе важно заметить, что электрон становится релятивистским при магнитном поле большем, чем Швингеровское критическое поле $B_c = m^2/e$, но электрон на нижнем уровне Ландау остается нерелятивистским[7] - [11].

Линия 21см атома водорода, возникающая из-за сверхтонкого расщепления, была открыта в 1951 году [58] и известна с чрезвычайно высокой точностью [61, 62]

$$\Delta E_{hfs} = 1420.4057517667(9) \ MHz, \tag{4.47}$$

Данная спектральная линия служит одним из основных инструментов радиоастрономии. Сверхтонкое расщепление в низшем порядке теории возмущений может быть найдено из Брейтовского вазимодействия магнитных диполей

$$\hat{\mathcal{H}}_{hf}^{(0)} = \frac{8\pi}{3} g_p \mu_B \mu_N (\boldsymbol{\sigma}_e \cdot \boldsymbol{\sigma}_p) \delta(\mathbf{r}), \qquad (4.48)$$

где $g_p = 2.79, \ \mu_N = e/2m_p$. В первом порядке теории возмущений в отсутствие магнитного поля данный матричный элемент дает следующее расщепление уровней

$$\Delta E_{hfs} = \frac{32\pi}{3} g_p \mu_B \mu_N |\Psi(0)|^2.$$
(4.49)

К данному расщеплению существует три типа поправок - релятивистские эффекты, КЭД-поправки и поправки из-за ядерной структуры [61, 62].

Далее рассмотрим сверхтонкое расщепление в сверхсильном магнитном поле. В этом случае Брейтовское взаимодействие модфицируется - помимо роста $|\Psi(0)|^2$ возникают тензорные слагаемые из-за того, что волновая функция электрона перестает быть сферически симметричной. Вывод оператора $\hat{\mathcal{H}}_{hf}$ проще всего начать с закона Био-Савара

$$\hat{\mathcal{H}}_{hf} = -g\mu_N(\boldsymbol{\sigma}_p \mathbf{B}'), \qquad (4.50)$$

где **В**' - магнитное поле, создаваемое спиновой частью электронного тока. Электронный ток можно записать следующим образом

$$\mathbf{j}_e = -\mu_B \nabla \Psi^2 \times \boldsymbol{\sigma}_e, \tag{4.51}$$

где функция $\Psi(\rho, z)$ - действительная, не зависящая от φ функция, так как мы рассматриваем основное состояние с $l_z = 0$. Далее мы имеем

$$\mathbf{B}' = \int dV \frac{\mathbf{n} \times \mathbf{j}}{r^2},\tag{4.52}$$

$$\mathbf{n} \times \mathbf{j} = -\mu_B \left[\nabla \Psi^2 (\mathbf{n} \cdot \boldsymbol{\sigma}_e) - \boldsymbol{\sigma}_e (\mathbf{n} \cdot \nabla \Psi^2) \right], \qquad (4.53)$$

где **n** - единичный вектор вдоль линии, соединяющей элемент объема dV и начало координат, в которое помещен протон. Подставляя в (4.50), получим

$$\hat{\mathcal{H}}_{hf} = g\mu_B\mu_N \left[\int dV \frac{(\boldsymbol{\sigma}_p \cdot \nabla \Psi^2)(\boldsymbol{\sigma}_e \cdot \mathbf{r})}{r^3} - (\boldsymbol{\sigma}_e \cdot \boldsymbol{\sigma}_p) \int dV \frac{(\mathbf{r} \cdot \nabla \Psi^2)}{r^3} \right].$$
(4.54)

Интегрируя по частям можно привести данное выражение к стандартной форме

$$\hat{\mathcal{H}}_{hf} = g\mu_B\mu_N \int dV\Psi^2 \left[\frac{8\pi}{3}(\boldsymbol{\sigma}_p \cdot \boldsymbol{\sigma}_e)\delta(\mathbf{r}) + \frac{3(\boldsymbol{\sigma}_p \cdot \mathbf{r})(\boldsymbol{\sigma}_p \cdot \mathbf{r}) - (\boldsymbol{\sigma}_p \cdot \boldsymbol{\sigma}_e)r^2}{r^5}\right].$$
 (4.55)

Данное выражение содержит δ-функцию в явном виде, поэтому удобнее для дальнейших вычислений.

Далее необходимо записать волновую функцию атома водорода в сильном магнитном поле. Данная задача имеет долгую историю [63]. В нашем случае для упрощения задачи и проведения оценочных расчетов мы будем использовать вариационный метод. К тому же, в рамках вариационного подхода возможно получить аналитические зависимости искомых поправок от магнитного поля. Пробную волновую функцию основного состояния можно записать следующим образом

$$\Psi_0(\rho, z) = \sqrt{N} \exp\left(-\frac{\rho^2}{2r_\perp^2} - \frac{z^2}{2r_z^2}\right),$$
(4.56)

где нормировочный множитель равен $N = (\pi^{3/2} r_{\perp}^2 r_z)^{-1}$. В волновой функции присутствует два вариационных параметра(радиусы эллипсоида вращения), по которым происходит минимзация для каждого значения H. Следуя [64, 65] $r_{\perp} \sim (H)^{-1/2}$, $r_z \sim (\ln H)^{-1}$. Данная волновая функция в диапазоне полей 0 < H < 1показывает хорошее согласие с очень точными расчетами, проделанными в [66].

Основное состояние находится с помощью следующей процедуры

$$E_o = \langle \Psi_0 | \hat{\mathcal{H}}_0 | \Psi_0 \rangle, \ \frac{\partial E_0}{\partial r_\perp} = 0, \ \frac{\partial E_0}{\partial r_z} = 0, \tag{4.57}$$

где $\hat{\mathcal{H}}_0$ получается из уравнения (4.45) путем изъятия слагаемого $\mu_B \sigma_z B$. Энергия основного состояния находится с помощью несложного вычисления

$$E_0(r_{\perp}, r_z) = \frac{1}{2mr_{\perp}^2} \left(1 + \frac{\beta^2}{2} \right) + \frac{m\omega^2 r_{\perp}^2}{2} - \frac{\alpha\beta}{r_{\perp}\sqrt{\pi(1-\beta^2)}} \ln \frac{1+\sqrt{1-\beta^2}}{1-\sqrt{1-\beta^2}}, \quad (4.58)$$

Рис. 4.4: Зависимость энергии основного состояния(без спинового вклада) от магнитного поля. Сплошная линия - вариационный метод. Пунктирная линия - аккуратные расчеты [66]

где $\beta = r_{\perp}/r_z < 1$ для B > 0. В качестве иллюстрации, рассмотрим два предельных случая для радиусов r_{\perp} и r_z : 1) H = 0, тогда $\omega = 0$, $r_{\perp} = r_z$, $E_0 = 4m\alpha^2/3\pi \simeq 0.85 \ Ry$ 2) Свободная частица в магнитном поле, $r^2 = (m\omega)^{-1}$, $E_0 = \omega$.

На рис.4.4 приведена зависимость энергии основного состояния от магнитного поля в сравнении с результатами, полученными в [66]. Ошибка по сравнению с аккуратными расчетами не превышает 15%.

На рис.4.5 показана зависимость среднеквадратичных радиусов волновой функции от магнитного поля. Данный график наглядно показывает деформацию волновой функции в магнитном поле.

Далее, зная пробную волновую функцию, можно вычислить матричный элемент сверхтонкого расщепления в первом порядке теории возмущений уже при наличии сильного внешнего поля. Для этого подставим волновую функцию в (4.55) и проинтегрируем

$$\hat{\mathcal{H}}_{hf} = g\mu_B\mu_N \left[(F_1(H) + F_2(H))(\boldsymbol{\sigma}_e \cdot \boldsymbol{\sigma}_p) + (F_1(H) - F_2(H))\boldsymbol{\sigma}_{pz}\boldsymbol{\sigma}_{ez} \right], \qquad (4.59)$$

где

$$F_1(H) = \frac{1}{\sqrt{\pi}r_{\perp}^2 r_z} \left[\frac{2}{1-\beta^2} - \frac{\beta^2}{(1-\beta^2)^{3/2}} \ln \frac{1+\sqrt{1-\beta^2}}{1-\sqrt{1-\beta^2}} \right],$$
 (4.60)

Рис. 4.5: Зависимость среднеквадратичных радиусов волновой функции от магнитного поля

$$F_2(H) = \frac{2}{\sqrt{\pi}r_z^3} \left[-\frac{2}{1-\beta^2} + \frac{1}{(1-\beta^2)^{3/2}} \ln \frac{1+\sqrt{1-\beta^2}}{1-\sqrt{1-\beta^2}} \right].$$
 (4.61)

При магнитном поле, стремящемся к нулю, имеем следующие асимптотики $H \to 0, \, \beta \to 1, \, r_{\perp} = r_z = r, \,$ и в итоге

$$F_1 = F_2 = F = \frac{4}{3\sqrt{\pi}}r^{-3} = \frac{4\pi}{3}|\Psi(0)|^2, \qquad (4.62)$$

то есть получаем выражение (4.48). Аналогично для сверхсильного магнитного поля $H\gg 1$

$$\beta \sim \frac{\ln H}{\sqrt{H}}, \ F_1 \sim H \ln H, \ F_2 \sim \sqrt{H} \ln^2 H.$$
 (4.63)

Полученные выражения иллюстрируют то, что называется "эффектом магнитной фокусировки волновой функции", то есть усиление сверхтонкого взаимодействия из-за роста $|\Psi(0)|^2$ в магнитном поле и возникновение тензорных компонент, также зависящих от магнитного поля.

Следующий этап - выяснить, каким образом эффект магнитной фокусировки модифицирует Зеемановское расщепление.

В магнитном поле основное состояние атома водорода расщепляется на 4 уровня, которые являются собственными значениями гамильтониана

$$\hat{\mathcal{H}}'_{hf} = \hat{\mathcal{H}}_{hf} + \mu_B(\boldsymbol{\sigma}_e \cdot \mathbf{B}) - g\mu_N(\boldsymbol{\sigma}_p \cdot \mathbf{B}), \qquad (4.64)$$

Рис. 4.6: Поправка к частоте линии 21см в зависимости от безразмерного магнитного поля, возникающая из за магнитной фокусировки волновой функции.

где $\hat{\mathcal{H}}_{hf}$ соответствует (4.59). Сосредоточим внимание на переходе между состояниями $|a\rangle = |S = 1, S_z = 0\rangle$ и $|b\rangle = |S = 0, S_z = 0\rangle$, которые при B = 0 соответствуют переходу, излучающему линию 21см. После диагонализации (4.64) имеем

$$\nu = E_a - E_b = \Delta E_{hfs} \sqrt{\gamma^2 + \left(\frac{2\mu_B B}{\Delta E_{hfs}}\right)^2 \left(1 + g\frac{m}{m_p}\right)^2},\tag{4.65}$$

где ΔE_{hfs} соответствует (4.49) и $\gamma = (F_1 + F_2)/2F$. Вычисление функции r_{\perp}^2/r_z^2 в пределе слабых полей H требует очень точных численных расчетов, поэтому в оценочном вычислении данная область не рассматривается. В то же время, современные эксперименты с мазерами имеют чувствительность к отклонению частоты порядка 1 mHz [13, 14]. Это дает надежду на то, что столь тонкие эффекты в будущем можно будет наблюдать экспериментально. На рис.4.6 показано отклонение частоты в зависимости от магнитного поля, вызванное эффектом магнитной фокусировки волновой функции.

Магнитная фокусировка - явление, которое носит общий характер. Она имеет место для любого процесса в котором важен интеграл перекрытия волновых функций. В частности, это приводит к модификации сечения β -распада в магнитном поле [15].

4.3 Однопионный обмен в магнитном поле.

При вычислении Δ_{SS}^{pert} (см. (3.59)) в случае нейтрона оказывается, что величины спин-спинового взаимодействия недостаточно, чтобы объяснить экспериментальную разницу в массах нейтрона и Δ в 300 MeV. Как известно, в случае нейтрона данная разница может быть компенсирована путем введения дополнительной пертурбативной поправки - однопионного обмена [48]. Данное взаимодействие имеет такую же зависимость от проекций спинов кварков, как и спинспиновое(взаимодействие) и описывается формулой

$$V_{\text{ope}}^{(ij)}(\mathbf{k}) = 4\pi g_{qq\pi}^2 \boldsymbol{\tau}(i) \boldsymbol{\tau}(j) \frac{\Gamma_i \Gamma_j}{\mathbf{k}^2 + m_\pi^2} \left(\frac{\Lambda^2}{\Lambda^2 + \mathbf{k}^2}\right)^2, \qquad (4.66)$$

где $\Gamma_i = \frac{\boldsymbol{\sigma}(i)\mathbf{k}}{\omega_i + m_i}, \quad \omega = \sqrt{\mathbf{k}^2 + m_i^2}.$ Сравнивая V_{OPE} и Δ_{SS}^{pert} , можно заметить, что они имеют одинаковую структуру в импульсном пространстве, так как для исчезающе малых токовых масс кварков $m_u = m_d = m_\pi = 0$ можно записать $\frac{(\boldsymbol{\sigma}(i)\mathbf{k})(\boldsymbol{\sigma}(j)\mathbf{k})}{\omega_i\omega_jk^2} \rightarrow \frac{\boldsymbol{\sigma}(i)\boldsymbol{\sigma}(j)}{\omega_i\omega_j}$. Как показывают численные расчеты в [48], проведенныее при $\boldsymbol{\sigma} = 0.12$ GeV², вклад в массу, даваемый поправкой на спин-спиновое взаимодействие $\bar{V}_{ss} = \sum_{i>j} (V_{hf}^{(ij)} + V_{ope}^{(ij)})$ для n и Δ - (-471 MeV) и (-79 MeV) соответственно. Кроме того, после суммирования V_{OPE} и V_{SS} , можно ввести новое, обобщенное сверхтонкое взаимодействие, заменяя в (4.39)) α_s на $\alpha_{hf} = \alpha_s + \alpha_{ope}$ и, принимая во внимание пионную структуру в однопионном обмене,

$$V_{hf} = \Delta_{SS}^{\text{pert}} + V_{\text{ope}} \simeq \tilde{d}\sigma_3(\sigma_1 + \sigma_2) + \tilde{b}\sigma_1\sigma_2, \qquad (4.67)$$

Рассмотрим, каким образом пионный обмен зависит от магнитного поля. На данном этапе удобно выписать вклады, даваемые обменами π^+, π^- и π^0 мезонами, отдельно

$$V_{\text{ope}}^{ij} = \frac{4\pi g^2}{\omega_i \omega_j} \left[\frac{(\boldsymbol{\sigma}_i \cdot \mathbf{k})(\boldsymbol{\sigma}_j \cdot \mathbf{k})}{k^2 + m_{\pi^+}^2} 2\tau_+^i \tau_-^j + \frac{(\boldsymbol{\sigma}_i \cdot \mathbf{k})(\boldsymbol{\sigma}_j \cdot \mathbf{k})}{k^2 + m_{\pi^-}^2} 2\tau_-^i \tau_+^j + \frac{(\boldsymbol{\sigma}_i \cdot \mathbf{k})(\boldsymbol{\sigma}_j \cdot \mathbf{k})}{k^2 + m_{\pi^0}^2} \tau_3^i \tau_3^j \right] \left(\frac{\Lambda^2}{k^2 + \Lambda^2} \right)^2. \quad (4.68)$$

Как было показано аналитически в работе [67], и решеточными расчетами в [68], массы π^{\pm} растут с увеличением магнитного поля как ~ \sqrt{eB} . Из-за этого эффекта вклад первых двух слагаемых в (4.68) подавляется в сильном магнитном поле. С другой стороны, масса π^0 , в отличие от заряженных пионов, имеет противоположную тенденцию - она немного уменьшается с ростом магнитного поля [67]. Данные

Рис. 4.7: Зависимость величины диагонального элемента сверхтонкого взаимодействия для бариона в состоянии $(u_d_+d_+)$. Пунктирной линией обозначена область, в которой теория возмущений становится неприменимой.

соображения приводят к тому, что в режиме сильного поля в формуле (4.68) остается только третье слагаемое. Поэтому можно записать $\alpha_{ope}(eB \gg \sigma) \simeq \frac{1}{3} \alpha_{ope}(B = 0)$. Будучи усредненными по изоспиновому состоянию $|ddu\rangle$ и пространственной части волновой функции нейтрона (3.98), однопионный обмен и спин-спиновое пертурбативное взаимодействие (3.64) имеют одинаковую структуру. Отличие возникает только в способе сглаживания точечного δ -функционального взаимодействия - в случае спин-спинового взаимодействия для этого служит размазка с характерным параметром вакуумной корреляционной длины λ , а в случае однопионного обмена ту же самую функцию выполняет Юкавский форм-фактор. Исходя из сказанного выше, можно ввести обобщенную константу сверхтонкого взаимодействия α_{hf} . В нашем случае, данная обобщенная константа выбиралась таким образом, чтобы воспроизвести экспериментально наблюдаемое расщепление нейтрона и Δ в 300 MeV при нулевом магнитном поле.

Результат вычисления диагонального элемента сверхтонкого взаимодействия для состояния $(u_-d_+d_+)$ приведен на рис.4.7. Из графика хорошо видно, что сверхтонкое взаимодействие очень чувствительно к вншнему магнитному полю. Масса нейтрона из-за данной, достаточно большой по величине поправки, стремится обратиться в нуль при $eB \sim 2\sigma$, в то время как общее утверждение, сформулированное в [44, 45], исключает возможность для массы нейтрона пересечь нуль при каком бы то ни было магнитном поле. Таким образом, в случае нейтрона коллапс сверхтонкого взаимодействия невозможно предотвратить с помощью методики, успешно работающей для мезонов - можно лишь "отдалить" его в область больших величин внешнего магнитного поля. Данная проблема связана с тем, что сверхтонкое взаимодействие в данном случае рассматривается в первом порядке теории возмущений.

Глава 5

Массовые спектры адронов в магнитном поле. Заключение.

В заключительной Главе 5 приводятся окончательные результаты расчетов массовых спектров мезонов и барионов. На рис.5.1 изображены массовые траетории некоторых мезонных конфигураций в зависимости от магнитного поля еВ. Вычисления были сделаны с согласно процедуре минимизации основного состояния релятивистского гамильтониана (2.27), далее были добавлены пертурбативные поправки, вычисленные в Главе 4. Штриховые линии соответствуют ρ^0 с проекцией полного спина на ось з $s_z = 0$ (собственное значение E_1 согласно терминологии, введенной в (4.29)). Сплошные линии описывают ρ^0 с $s_z = 1$, сплошная линия, проходящая ниже всех - ρ^+ с $s_z = 1$. Черными треугольниками показаны данные решеточных расчетов [69]. Видно, что полученные результаты находятся в достаточно хорошем согласии с численными вычислениями. Из графиков можно видеть, что массы первых двух упомянутых состояний возрастают с асимптотикой $\sim \sqrt{eB}$ (коэффициент пропорциональности зависит от спиновой конфигурации и величин зарядов кварков), а массы двух последних - стремятся к конечному пределу в соответствии с соображениями, приведенными в пункте 4.2(стоит обратить внимание, что результаты, представленные на рис.5.1 были получены при нулевых токовых массах кварков $m_1 = m_2 = 0$, так как эти массы можно считать пренебрежимо малыми по сравнению с динамическими массами кварков ω). Таким образом, с помощью формализма релятивистского гамильтониана и процедуры факторизации волновой функции в магнитном поле с учетом конфайнмен-

Рис. 5.1: Массы мезонов(в GeV) в зависимости от магнитного поля.

та, одноглюонного обмена и спинового заимодействия. Путем замены потенциала конфайнмента на потенциал гармонического осциллятора с помощью механизма минимизации (см. Главу 1) были получены аналитические выражения для динамической массы кварков в магнитном поле (3.51). При выводе релятивистского гамильтониана в формализме вакуумных корреляторов, в (2.16) было положено $\Gamma_1 = \gamma_i, \ \Gamma_2 = \gamma_j,$ что соответствует рассмотрению только векторных мезонов. Введением этого ограничения удается избежать сложной проблемы киральных степеней свободы для псевдо-Голдстоуновских мезонов. Как было указано в пункте 4.2, низшее нейтральное состояние с проекцией спина $s_z = 0$ является смесью ρ^0 и π^0 согласно спин-изоспиновой структуре этих состояний. В самом деле, конфигурации $u\bar{u}$ или $d\bar{d}$ являются смесями состояний с изоспинами I=0 и I=1,и в сильном магнитном поле имеют проекции спинов $|u\uparrow, \bar{u}\downarrow\rangle$, что соответствует смеси состояний с полным спином *S* = 0 и *S* = 1. На графике приведена масса наиболее тяжелого (верхнего) из этих состояний, $\rho^0(eB)$, в то время как наиболее легкое состояние $\pi^0(eB)$ требует введения киральных поправок. Данное вычисление было проделано в работе соавторов [67]. Также при вычислении были учтены отрицательные поправки возникающие из-за одноглюонного обмена и спин-спинового взаимодействия. Экранирование кварк-антикварковыми петлями потенциала цве-

Рис. 5.2: Зависимость массы нейтрона от магнитного поля. Сплошная линия показывает область применимости метода расчета. Штриховая линия показывает предполагаемое поведение массы в сверхсильном поле. Пунктирная линия соответствует состоянию $|--+\rangle$ с сверхтонким взаимодействием (спин-спиновое взаимодействие + однопионный обмен) в качестве поправки.

тового Кулона позволяет избежать обращения массы мезона в нуль, как это было показано в пункте 4.1. Сглаживание δ -функции в матричном элементе сверхтонкого взаимодействия по характерному масштабу $\lambda \sim 1 \ GeV^{-1}$ хаотического фонового глюонного поля позволяет избежать коллапса за счет фокусирования волновой функции системы в начале координат $|\Psi(0)|^2 \sim eB$ согласно методу приведенному в пункте 4.2. Эти два механизма, согласно которым пертурбативные поправки входят в насыщение и останавливают свой рост, позволяют избежать магнитного коллапса КХД.

Теперь проанализируем результаты, полученные для бариона в магнитном поле. Ссылок на работы, в которых система трех тел в магнитном поле рассматривалась бы релятивистским образом, автору найти не удалось. В результате были получены аналитические выражения для динамической массы нейтрона в магнитном поле, с учетом конфайнмента, одноглюонного обмена и сверхтонкого взаимодействия. Исходя из теории размерностей, следовало ожидать значительных изменений массы в случае, когда внешнее магнитное поле становится сравнимым по интенсивности с натяжением глюонной струны $eB \sim \sigma \sim 10^{19} G \sim 0.2 \ GeV^2$. Данные вычисления (рис. 5.2) подтверждают это утверждение.

Техника отделения движения центра инерции с помощью псевдоимпульса требует того, чтобы динамические массы d кварков были равны, то есть $\omega_1 = \omega_2$. Это условие возможно выполнить только в том случае, когда спины d кварков сонаправлены. Таким образом, в рамках предлагаемого подхода можно рассматривать только сосотояния $|--+\rangle$ и $|++-\rangle$ для нейтральной конфигурации ddu (подробное построение волновой функции нейтрона с учетом ограничений, наклаываемых методом разделения переменных, было описано в пункте 4.2). В сильном магнитном поле при $eB \gg \sigma$ ведущий вклад в основное состояние системы ddu дает волновая функция со спиновой структурой $|--+\rangle$, поэтому результаты для динамической массы в данной области значений магнитного поля можно считать достаточно надежными.На рис.5.2 построена зависимость динамической массы данного состояния с учетом Кулоновской поправки и поправки сверхтонкого взаимодействия в зависимости от магнитного поля. Ситуация сильно меняется после учета пертурбативных поправок в первом порядке теории возмущений - основной вклад дает поправка сверхтонкого взаимодействия, которая приводит к резкому уменьшению массы нейтрона и обращению ее в нуль при полях порядка $eB \sim 0.5 \ GeV^2$ (см. точечную линию на рис.5.2). Данное явление имеет место как с учетом однопионного обмена, так и без него. Данное поведение противоречит общему утверждению, сделанному в [44], что динамическая масса в магнитном поле не может обращаться в нуль при конечных значениях внешнего поля. Гипотетическая массовая траектория в режиме сверхсильного магнитного поля, удовлетворяющая приведенным выше аргументам, показана на рис.5.2 пунктирной линией. В режиме слабых магнитных полей возникает другая трудность - невозможность применять метод разделения переменных. При нулевом или слабом поле компоненты волновой функции бариона (3.97) смешиваются. В рамках избранного подхода можно проводить вычисления в режиме слабых полей порядка < 0.15 GeV². Режим слабого поля и Зеемановское смешивание волновых функций подробно рассмотрены в приложении А. Результат данного расчета и сшивка решений в диапазоне $eB \sim 0.15 \ GeV^2$ изображен на рис.5.2 пунктирной линией. Что касается сравнения полученного массового спектра нейтрона в магнитном поле с решеточными расчетами, на текущий момент автору не удалось найти подобных результатов в литературе.

Очень интересным представляется вопрос, обращается ли масса нейтрона в

нуль в пределе $eB \to \infty$. Такое "падение на центр" может происходить по двум причинам. Первая - взаимодействие посредством цветового Кулона, но экранирование кварк-антикварковыми петлями спасает ситуацию таким же образом, как и в случае мезонов. Вторым источником коллапса может служить сверхтонкое взаимодействие, пропорциональное δ -функции. Матричный элемент сверхтонкого взаимодействия за счет фокусировки волновой функции нейтрона в магнитном поле испытывает линейный рост с магнитным полем ~ еВ. В случае мезонов данной проблемы удавлось избежать путем размазки δ-функции с характерным размером λ , задающимся корреляционной длиной хаотического вакуумного глюонного поля. В случае нейтрона данная процедура лишь переводит точку зануления массы нейтрона в область больших полей, но потенциально не избавляет от возможного коллапса (см. пунктирную линию на рис.5.2). В то же время, как было показано в [44] из свойств Евклидова лагранижиана, обращение массы нейтрона в ноль невозможно при конечных полях. Отсюда можно сделать вывод, что в данном случае мы сталкиваемся с границами применимости теории возмущений для взаимодействия типа δ -функции. Возможно, эта проблема когда-нибудь будет решена.

Приложение А: Смешивание спиновых состояний бариона в магнитном поле.

Как было показано в разделе 4.2, для получения правильной величины расщепления между нейтроном n и Δ^0 при нулевом внешнем магнитном поле необходимо сделать сшивку решений для областей слабых ($eB < \sigma$) и сильных ($eB > \sigma$) магнитных полей. Для области сильных магнитных полей массовый спектр состояния (--+) вычисляется с помощью метода псевдоимпульса. Для области слабых полей значения динамической массы и пертурбативных поправок (собственной энергии и одноглюонного обмена) вычисляются при нулевом магнитном поле, то есть полностью исключается влияние магнитного поля на пространственную часть волновой функции системы. На следующем этапе члены гамильтониана, соответствующие магнитным моментам и сверхтонкому взаимодействию рассматриваются по теории возмущений. Финальным этапом служит диагонализация спин-зависимой части гаимльтониана аналогично той, что проводится при рассмотрении классического эффекта Зеемана

$$h_{\sigma} = \tilde{d}\boldsymbol{\sigma}_{3}(\boldsymbol{\sigma}_{1} + \boldsymbol{\sigma}_{2}) + \tilde{b}\boldsymbol{\sigma}_{1}\boldsymbol{\sigma}_{2} - c_{3}\sigma_{3}^{z} + c(\sigma_{1}^{z} + \sigma_{2}^{z}), \qquad (6.1)$$

где коэффициенты \tilde{d} и \tilde{b} соответствуют d и b, взятым при нулевом магнитном поле. Часть волновой функции с проекцией полного спина на ось z равной $\left(-\frac{1}{2}\right)$, соответствующая расщеплению $n - \Delta$ (см. раздел 4.2) имеет вид

$$\Psi_{-\frac{1}{2}} = \alpha |--+\rangle + \frac{\beta}{\sqrt{2}} (|+--\rangle + |-+-\rangle), \ \alpha^2 + \beta^2 = 1.$$
(6.2)

В итоге, после несложных преобразований, получим

$$M_{\pm} = E_0 + \tilde{b} - \tilde{d} - \pm \sqrt{8\tilde{d}^2 + (c + c_3 + \tilde{d})^2}.$$
(6.3)

Заключительным этапом приведения полученного расщепления между n и Δ^0 к экспериментально наблюдаемому значению является выбор величины обобщенной константы сверхтонкого взаимодействия $\alpha_{hf} = \alpha_s + \alpha_{ope}$, которая при нулевом поле оказывается равной $\alpha_{hf}(B = 0) = 17$. Как было показано в разделе 4.3, в пределе сверхсильного магнитного поля $(eB \gg \sigma) \alpha_{ope} \simeq \frac{1}{3}\alpha_{ope}(B = 0)$, так как вклады в обмен от обмена π^+ и π^- мезонами подавлены и взаимодействие происходит лишь посредством обмена π^0 мезоном. В промежуточном регионе $(eB \sim \sigma)$ решения для двух областей должны соединяться гладко, что соответствует выбору $\alpha_{ope}(eB \gg \sigma) = 7$. В результате, наилучшей аппроксимацией оказывается выбор $\alpha_s = 0.5$ и $\alpha_{ope}(B = 0) = 3\alpha_{ope}(eB \gg \sigma) = 16.4$.

Благодарности

Автор выражает свою искреннюю благодарность своим учителям и соавторам -Борису Олеговичу Кербикову и Юрию Антоновичу Симонову. Без их участия научная деятельность автора в данной области была бы невозможна. Автор благодарен В.Д. Орловскому за помощь в проведении расчетов. За многочисленные дискуссии автор благодарен сотрудникам теоротдела ИТЭФ: Михаилу Иосифовичу Высоцкому, Виктору Александровичу Новикову и Сергею Игоревичу Годунову.

Список иллюстраций

3.1	Зависимость суммы динамической массы и собственно-энергетической	
	поправки для нейтрона со спин-изоспиновой конфигурацией $ ddu_+ angle$	
	от магнитного поля	36
4.1	Глюонные и $q ar q$ петли в глюонном обмене между кварком Q и анти-	
	кварком $ar{Q}$ в мезоне $(Qar{Q})$	42
4.2	Поправка к массе мезона, вызванная одноглюонным обменом. Штрих-	
	пунктирная линия - Кулоновский коллапс мезона в отсутсвии экра-	
	нировнаия одноглюонного обмена кварк-антикварковыми петлями.	
	Сплошная линия - экранирование парами $q\bar{q}$ предотвращает кол-	
	лапс	43
4.3	Кулоновская поправка к массе нейтрона в зависимости от магнит-	
	ного поля. Можно видеть насыщение при $eB > 4 \ GeV^2$, вызванное	
	вкладом кварк-антикваруовых петель.	45
4.4	Зависимость энергии основного состояния(без спинового вклада) от	
	магнитного поля. Сплошная линия - вариационный метод. Пунктир-	
	ная линия - аккуратные расчеты [66]	54
4.5	Зависимость среднеквадратичных радиусов волновой функции от	
	магнитного поля	55
4.6	Поправка к частоте линии 21см в зависимости от безразмерного маг-	
	нитного поля, возникающая из за магнитной фокусировки волновой	
	функции	56
4.7	Зависимость величины диагонального элемента сверхтонкого взаи-	
	модействия для бариона в состоянии (ud_+d_+) . Пунктирной линией	
	обозначена область, в которой теория возмущений становится непри-	
	менимой	58

5.1	Массы мезонов(в GeV) в зависимости от магнитного поля	61
5.2	Зависимость массы нейтрона от магнитного поля. Сплошная линия	
	показывает область применимости метода расчета. Штриховая ли-	
	ния показывает предполагаемое поведение массы в сверхсильном по-	

ле. Пунктирная линия соответствует состоянию $ +\rangle$ с сверхтон-	
ким взаимодействием (спин-спиновое взаимодействие + однопион-	
ный обмен) в качестве поправки.	62

Список таблиц

Литература

- [1] J.M. Lattimer and M. Prakash, Phys.Rep. 442, 109 (2007).
- [2] D.E. Kharzeev, L.D. McLerran, H.J. Warringa, Nucl. Phys. A 803, 227 (2008);
- [3] V. Skokov, A. Illarionov, V. Toneev, Int.J.Mod.Phys.A 24, 5925 (2009).
- [4] T. Tajima, Eur.Phys.J. D 55, 519 (2009).
- [5] E.V. Luschevskaya, O.V. Larina, JETP Lett. 98, 11, p.652 (2014), arXiv:1306.2936.
- [6] Y. Hidaka and A. Yamamoto, Phys.Rev.D 87, 094502 (2013).
- [7] A. E. Shabad and V. V. Usov, Phys. Rev. Lett. **98**, 180403 (2007);
- [8] A. E. Shabad and V. V. Usov, Phys. Rev. D 73, 125021 (2006);
- [9] S. Godunov, B. Machet, M. Vysotsky, Phys.Rev.D 85 044058 (2013), arXiv:1112.1891.
- [10] B. Machet and M.I. Vysotsky, Phys. Rev., **D83**:025022 (2011);
- [11] S.I. Godunov and M.I. Vysotsky, arXiv:1304.7940.
- [12] M. Andreichikov, B. Kerbikov, V. Orlovsky, Yu.Simonov, Phys.Rev.Lett. 110, 162002 (2013), arXiv:1211.6568.
- M.A. Humphrey, D.F. Phillips, E.M. Mattison, R.F.C. Vessot, R.E. Stoner and R.L. Weisworth, Phys.Rev.A 68, 063807 (2003);
- [14] D.F. Phillips, M.A. Humphrey, E.M. Mattison, R.F.C. Vessot, R.E. Stoner, Phys.Rev.D 63, 111101 (2001).

- [15] K.A. Kouzakov and A.I. Studenikin, Phys. Rev. C72, 015502 (2005).
- [16] M. Andreichikov, B. Kerbikov, Yu. Simonov, JETP Lett. 99, 5, p.286 (2014), arXiv:1304.2516.
- [17] M. Andreichikov, B. Kerbikov, V. Orlovsky, Yu. Simonov, Phys.Rev.D 87, 094029 (2013), arXiv:1304.2533.
- [18] V. Orlovsky, Yu. Simonov, JHEP 1309 (2013) 136, arXiv:1306.2232.
- [19] M. Andreichikov, B. Kerbikov, V. Orlovsky, Yu. Simonov, Phys.Rev.D 89, 074033 (2014), arXiv:1312.2212.
- [20] E.V. Luschevskaya, O.A. Kochetkov, O.V. Larina, O.V. Teryaev, 32-nd International Symposium of Lattice Field Theory, 23-28 June 2014, Columbia U. NY, arXiv:1411.0730
- [21] D. E. Kharzeev, K. Landsteiner, A. Schmitt, and H.-U.Yee, Lect. Notes Phys. 871, 1 (2013).
- [22] A. E. Shabad and V. V. Usov, Phys. Rev. Lett. 98, 180403 (2007); Phys. Rev. D 73, 125021 (2006).
- [23] J. Ambjorn and P. Olesen, Nucl. Phys. **B315**, 606 (1989);
- [24] J. Ambjorn and P. Olesen, Phys. Lett. **B** 218, 67 (1989);
- [25] M. N. Chernodub, Phys. Rev. Lett. **106**, 142003 (2011);
- [26] M. N. Chernodub, Phys. Rev. D 82, 085011 (2010).
- [27] Yu. A. Simonov, Nucl. Phys. **B307**, 512 (1988);
- [28] Yu. A. Simonov and J. A. Tjon, Ann. Phys. (N.Y.) **300**, 54 (2002).
- [29] Yu. A. Simonov, arXiv:1303.4952.
- [30] Yu. A. Simonov, Phys. Lett. **B 226**, 151 (1989);
- [31] A. Yu.Dubin, A. B. Kaidalov, and Yu. A. Simonov, Phys. Lett. B 323, 41 (1994);
- [32] A. Yu.Dubin, A. B. Kaidalov, and Yu. A. Simonov, Phys. At. Nucl. 56, 1745 (1993).
- [33] A. Di Giacomo, H. G. Dosch, V. I. Shevchenko, and Yu. A.Simonov, Phys. Rep. 372, 319 (2002);
- [34] Yu. A. Simonov, Phys. Usp. **39**, 313 (1996);
- [35] Yu. A. Simonov, QCD: Perturbative or Nonperturbative (Interscience, Singapore, 2000).
- [36] A. M. Badalian and B. L. G. Bakker, Phys. Rev. D 66,034025 (2002);
- [37] A. M. Badalian, B. L. G. Bakker, and Yu. A. Simonov, Phys. Rev. D 66, 034026 (2002);
- [38] A. M. Badalian and B. L. G. Bakker, Phys. Rev. D 84, 034006 (2011);
- [39] A. M. Badalian, B. L. G. Bakker, and I. V. Danilkin, Phys. Rev. D 81, 071502 (2010).
- [40] Yu. A. Simonov and V. I. Shevchenko, Adv. High Energy Phys. 2009, 873051 (2009).
- [41] Yu. A. Simonov, arXiv:1304.0365.
- [42] Yu. A. Simonov, Phys. At. Nucl. 66, 338 (2003);
- [43] Yu. A. Simonov, Phys. Rev. D 65, 116004 (2002).
- [44] Yu. A. Simonov, Phys. Rev. **D** 88, 053004 (2013);
- [45] Yu. A. Simonov, Phys. Rev. D 65, 116004 (2002).
- [46] Yu. A. Simonov, Phys. At. Nucl. 66, 338 (2003).
- [47] Yu. A. Simonov, Phys. Rev. D 65, 116004 (2002).
- [48] Yu. A. Simonov, J. A. Tjon, and J. Weda, Phys. Rev. D 65, 094013 (2002).
- [49] W. E. Lamb, Phys. Rev. 85, 259 (1952);
- [50] L. P. Gor'kov and I. E. Dzyaloshinskii, Sov. Phys. JETP 26, 449 (1968);
- [51] J. E. Avron, I. W. Herbst, and B. Simon, Ann. Phys. (N.Y.) **114**, 431 (1978);

- [52] H. Grotsch and R. A. Hegstrom, Phys. Rev. A 4, 59 (1971).
- [53] H. Herold, H. Ruder, and G. Wunner, J. Phys. **B** 14, 751 (1981).
- [54] M.A. Andreichikov, B.O. Kerbikov, Yu.A. Simonov, arXiv:1210.0227 (2012).
- [55] Yu.A. Simonov, Phys. At.Nucl. 74, 1223 (2011);
- [56] Yu.A. Simonov, arXiv:1011.5386 [hep-ph];
- [57] Yu.A. Simonov, Phys. At. Nucl. 58, 107 (1995); hep-ph/9311247.
- [58] H.I. Ewen and E.M. Purcell, Nature **168**, 356 (1951)
- [59] R.J. Elliott and R. Loudon, J. Phys. Chem. Sd., 15, 196 (1960)
- [60] L.I. Schiff and H. Snyder, Phys. Rev. 55, 59 (1939)
- [61] S.G. Karshenboim, Phys. Rept. **422**, 1 (2005)
- [62] M.I. Eides, H. Grotch and V.A. Shelyuto, Phys. Rept. **342**, 63 (2001)
- [63] H. Friedrich and D. Wintgen, Phys. Rept. 183, 37 (1989)
- [64] B.M. Karnakov and V.S. Popov, J. Exp. Theor. Phys. 97, 890 (2003);
- [65] B.M. Karnakov and V.S. Popov, Zh. Eksp. Teor. Fiz., 141, 5 (2012).
- [66] H.C. Praddaude, Phys. Rev. A6, 1321 (1972)
- [67] V. D. Orlovsky and Yu. A. Simonov, J. High Energy Phys. 09 (2013) 136.
- [68] G. S. Bali, F. Bruckmann, G. Endrödi, Z. Fodor, S. D. Katz, and A. Schäfer, Phys. Rev. D 86, 071502 (2012).
- [69] Y. Hidaka and A. Yamamoto, Phys. Rev. D 87, 094502 (2013).
- [70] I. M. Narodetskii, Yu. A. Simonov, and V. P. Yurov, Z. Phys. C 55, 695 (1992).
- [71] S. Capstick and N. Isgur, Phys. Rev. D 34, 2809 (1986).